关闭

八皇后问题之一

35人阅读 评论(0) 收藏 举报

题意:八皇后问题是一个以国际象棋为背景的问题:如何能够在 8×8 的国际象棋棋盘上放置八个皇后,使得任何一个皇后都无法直接吃掉其他的皇后?为了达到此目的,任两个皇后都不能处于同一条横行、纵行或斜线上。
算法描述:
回溯法——在约束条件下先序遍历,并在遍历过程中剪去那些不满足条件的分支。
使用回溯算法求解的问题特征,求解问题要分为若干步,且每一步都有几种可能的选择,而且往往在某个选择不成功时需要回头再试另外一种选择,如果到达求解目标则每一步的选择构成了问题的解,如果回头到第一步且没有新的选择则问题求解失败。 在回溯策略中,也可以通过引入一些与问题相关的信息来加快搜索解的速度。对于皇后问题来说,由于每一行、每一列和每一个对角线,都只能放一个皇后,当一个皇后放到棋盘上后,不管它放在棋盘的什么位置,它所影响的行和列方向上的棋盘位置是固定的,因此在行、列方面没有什么信息可以利用。但在不同的位置,在对角线方向所影响的棋盘位置数则是不同的。可以想象,如果把一个皇后放在棋盘的某个位置后,它所影响的棋盘位置数少,那么给以后放皇后留下的余地就太大,找到解的可能性也大;反之留有余地就小,找到解的可能性也小。
//判断方向


  for(i=0;i<4;i++)
    {
        if(*(*(chess+i)+j)!=0)//*(chess+i)+j是第i行第j列元素的地址,*(*(chess+i)+j)是第i行第j列元素所对应的值
        {
            flag1 = 1;
            break;
        }
    }

//判断左上方


    for(i=row,k=j;i>=0&&k>=0;i--,k--)
    {
        if(*(*(chess+i)+k)!=0)
        {
            flag2 = 1;
            break;
        }
    }

//判断右下方

 for(i=row,k=j;i<4&&k<4;i++,k++)
    {
        if(*(*(chess+i)+k)!=0)
        {
            flag3 = 1;
            break;
        }
    }

//判断右上方

    for(i=row,k=j;i>=0&&k<4;i--,k++)
    {
        if(*(*(chess+i)+k)!=0)
        {
            flag4 = 1;
            break;
        }
    }

未完待续……..

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:234次
    • 积分:52
    • 等级:
    • 排名:千里之外
    • 原创:5篇
    • 转载:0篇
    • 译文:0篇
    • 评论:0条
    文章存档