IEEE Standard 754 Floating Point Numbers

转载 2004年09月04日 22:11:00

IEEE Standard 754 floating point is the most common representation today for real numbers on computers, including Intel-based PC's, Macintoshes, and most Unix platforms. This article gives a brief overview of IEEE floating point and its representation. Discussion of arithmetic implementation may be found in the book mentioned at the bottom of this article.

What Are Floating Point Numbers?

There are several ways to represent real numbers on computers. Fixed point places a radix point somewhere in the middle of the digits, and is equivalent to using integers that represent portions of some unit. For example, one might represent 1/100ths of a unit; if you have four decimal digits, you could represent 10.82, or 00.01. Another approach is to use rationals, and represent every number as the ratio of two integers.

Floating-point representation - the most common solution - basically represents reals in scientific notation. Scientific notation represents numbers as a base number and an exponent. For example, 123.456 could be represented as 1.23456 x 102. In hexadecimal, the number might be represented as 1.23abc x 162.

Floating-point solves a number of representation problems. Fixed-point has a fixed window of representation, which limits it from representing very large or very small numbers. Also, fixed-point is prone to a loss of precision when two large numbers are divided.

Floating-point, on the other hand, employs a sort of "sliding window" of precision appropriate to the scale of the number. This allows it to represent numbers from 1,000,000,000,000 to 0.0000000000000001 with ease.

Storage Layout

IEEE floating point numbers have three basic components: the sign, the exponent, and the mantissa. The mantissa is composed of the fraction and an implicit leading digit (explained below). The exponent base (2) is implicit and need not be stored.

The following figure shows the layout for single (32-bit) and double (64-bit) precision floating-point values. The number of bits for each field are shown (bit ranges are in square brackets):

Sign Exponent Fraction Bias
Single Precision 1 [31] 8 [30-23] 23 [22-00] 127
Double Precision 1 [63] 11 [62-52] 52 [51-00] 1023

The Sign Bit

The sign bit is as simple as it gets. 0 denotes a positive number; 1 denotes a negative number. Flipping the value of this bit flips the sign of the number.

The Exponent

The exponent field needs to represent both positive and negative exponents. To do this, a bias is added to the actual exponent in order to get the stored exponent. For IEEE single-precision floats, this value is 127. Thus, an exponent of zero means that 127 is stored in the exponent field. A stored value of 200 indicates an exponent of (200-127), or 73. For reasons discussed later, exponents of -127 (all 0s) and +128 (all 1s) are reserved for special numbers.

For double precision, the exponent field is 11 bits, and has a bias of 1023.

The Mantissa

The mantissa, also known as the significand, represents the precision bits of the number. It is composed of an implicit leading bit and the fraction bits.

To find out the value of the implicit leading bit, consider that any number can be expressed in scientific notation in many different ways. For example, the number five can be represented as any of these:

        5.00 x 100
        0.05 x 102
        5000 x 10-3

In order to maximize the quantity of representable numbers, floating-point numbers are typically stored in normalized form. This basically puts the radix point after the first non-zero digit. In normalized form, five is represented as 5.0 x 100.

A nice little optimization is available to us in base two, since the only possible non-zero digit is 1. Thus, we can just assume a leading digit of 1, and don't need to represent it explicitly. As a result, the mantissa has effectively 24 bits of resolution, by way of 23 fraction bits.

Putting it All Together

So, to sum up:

  1. The sign bit is 0 for positive, 1 for negative.
  2. The exponent's base is two.
  3. The exponent field contains 127 plus the true exponent for single-precision, or 1023 plus the true exponent for double precision.
  4. The first bit of the mantissa is typically assumed to be 1.f, where f is the field of fraction bits.

Ranges of Floating-Point Numbers

Let's consider single-precision floats for a second. Note that we're taking essentially a 32-bit number and re-jiggering the fields to cover a much broader range. Something has to give, and it's precision. For example, regular 32-bit integers, with all precision centered around zero, can precisely store integers with 32-bits of resolution. Single-precision floating-point, on the other hand, is unable to match this resolution with its 24 bits. It does, however, approximate this value by effectively truncating from the lower end. For example:

        11110000 11001100 10101010 00001111    // 32-bit integer
    = +1.1110000 11001100 10101010 x 231        // Single-Precision Float
    =   11110000 11001100 10101010 00000000    // Corresponding Value

This approximates the 32-bit value, but doesn't yield an exact representation. On the other hand, besides the ability to represent fractional components (which integers lack completely), the floating-point value can represent numbers around 2127, compared to 32-bit integers maximum value around 232.

The range of positive floating point numbers can be split into normalized numbers (which preserve the full precision of the mantissa), and denormalized numbers (discussed later) which use only a portion of the fractions's precision.

Denormalized Normalized Approximate Decimal
Single Precision ± 2-149 to (1-2-23)x2-126 ± 2-126 to (2-2-23)x2127 ± ~10-44.85 to ~1038.53
Double Precision ± 2-1074 to (1-2-52)x2-1022 ± 2-1022 to (2-2-52)x21023 ± ~10-323.3 to ~10308.3

Since the sign of floating point numbers is given by a special leading bit, the range for negative numbers is given by the negation of the above values.

There are five distinct numerical ranges that single-precision floating-point numbers are not able to represent:

  1. Negative numbers less than -(2-2-23) x 2127 (negative overflow)
  2. Negative numbers greater than -2-149 (negative underflow)
  3. Zero
  4. Positive numbers less than 2-149 (positive underflow)
  5. Positive numbers greater than (2-2-23) x 2127 (positive overflow)

Overflow means that values have grown too large for the representation, much in the same way that you can overflow integers. Underflow is a less serious problem because is just denotes a loss of precision, which is guaranteed to be closedly approximated by zero.

Here's a table of the effective range (excluding infinite values) of IEEE floating-point numbers:

Binary Decimal
Single ± (2-2-23)127 ~ ± 1038.53
Double ± (2-2-52)1023 ~ ± 10308.25

Note that the extreme values occur (regardless of sign) when the exponent is at the maximum value for finite numbers (2127 for single-precision, 21023 for double), and the mantissa is filled with 1s (including the normalizing 1 bit).

Special Values

IEEE reserves exponent field values of all 0s and all 1s to denote special values in the floating-point scheme.


As mentioned above, zero is not directly representable in the straight format, due to the assumption of a leading 1 (we'd need to specify a true zero mantissa to yield a value of zero). Zero is a special value denoted with an exponent field of zero and a fraction field of zero. Note that -0 and +0 are distinct values, though they both compare as equal.


If the exponent is all 0s, but the fraction is non-zero (else it would be interpreted as zero), then the value is a denormalized number, which does not have an assumed leading 1 before the binary point. Thus, this represents a number (-1)s x 0.f x 2-126, where s is the sign bit and f is the fraction. For double precision, denormalized numbers are of the form (-1)s x 0.f x 2-1022. From this you can interpret zero as a special type of denormalized number.


The values +infinity and -infinity are denoted with an exponent of all 1s and a fraction of all 0s. The sign bit distinguishes between negative infinity and positive infinity. Being able to denote infinity as a specific value is useful because it allows operations to continue past overflow situations. Operations with infinite values are well defined in IEEE floating point.

Not A Number

The value NaN (Not a Number) is used to represent a value that does not represent a real number. NaN's are represented by a bit pattern with an exponent of all 1s and a non-zero fraction. There are two categories of NaN: QNaN (Quiet NaN) and SNaN (Signalling NaN).

A QNaN is a NaN with the most significant fraction bit set. QNaN's propagate freely through most arithmetic operations. These values pop out of an operation when the result is not mathematically defined.

An SNaN is a NaN with the most significant fraction bit clear. It is used to signal an exception when used in operations. SNaN's can be handy to assign to uninitialized variables to trap premature usage.

Semantically, QNaN's denote indeterminate operations, while SNaN's denote invalid operations.

Special Operations

Operations on special numbers are well-defined by IEEE. In the simplest case, any operation with a NaN yields a NaN result. Other operations are as follows:

Operation Result
n / ±Infinity 0
±Infinity x ±Infinity ±Infinity
±nonzero / 0 ±Infinity
Infinity + Infinity Infinity
±0 / ±0 NaN
Infinity - Infinity NaN
±Infinity / ±Infinity NaN
±Infinity x 0 NaN


To sum up, the following are the corresponding values for a given representation:

Float Values (b = bias)
Sign Exponent (e) Fraction (f) Value
0 00..00 00..00 +0
0 00..00 00..01
Positive Denormalized Real
0.f x 2(-b+1)
0 00..01
XX..XX Positive Normalized Real
1.f x 2(e-b)
0 11..11 00..00 +Infinity
0 11..11 00..01
0 11..11 10..00
1 00..00 00..00 -0
1 00..00 00..01
Negative Denormalized Real
-0.f x 2(-b+1)
1 00..01
XX..XX Negative Normalized Real
-1.f x 2(e-b)
1 11..11 00..00 -Infinity
1 11..11 00..01
1 11..11 10..00


A lot of this stuff was observed from small programs I wrote to go back and forth between hex and floating point (printf-style), and to examine the results of various operations. The bulk of this material, however, was lifted from Stallings' book.

  1. Computer Organization and Architecture, William Stallings, pp. 222-234 Macmillan Publishing Company, ISBN 0-02-415480-6
  2. IEEE Computer Society (1985), IEEE Standard for Binary Floating-Point Arithmetic, IEEE Std 754-1985.
  3. Intel Architecture Software Developer's Manual, Volume 1: Basic Architecture , (a PDF document downloaded from
  4. Comparing floating point numbers, Bruce Dawson, This is an excellent article on the traps, pitfalls and solutions for comparing floating point numbers. Hint — epsilon comparison is usually the wrong solution.

IEEE754标准 单精度(32位)/双精度(64位)浮点数解码

IEEE754标准 单精度(32位)/双精度(64位)浮点数直接解码 ,不借助任何的其他库函数, 采用 ascStrAdd() 对ASCII表示的数字串进行计算得到)内存中的浮点数位串的的10进制的...
  • jocks
  • jocks
  • 2012年07月30日 10:57
  • 15688

IEEE 754-1985 浮点数标准文档

对浮点数的理解对计算误差和可能的程序效率的低下的理解很有帮助 IEEE 754-1985 was an industry standard for representing floati...
  • wangeen
  • wangeen
  • 2013年03月08日 18:32
  • 1730


1.浮点数的存储格式浮点数在C/C++中对应float和double类型,我们有必要知道浮点数在计算机中实际存储的内容。IEEE754标准中规定float单精度浮点数在机器中表示用 1 位表示数字的符...
  • K346K346
  • K346K346
  • 2016年01月09日 17:08
  • 17213


将32位浮点数转换为IEEE754格式 32位浮点数IEEE754格式位: 1位符号位 + 8位指数位 + 23位尾数 转换思路: 1、计算整数部分的二进制格式; 2、计算小数部分的二进制格式; 3、...
  • mhl29
  • mhl29
  • 2016年05月14日 16:56
  • 1850

IEEE Floating Point Standard (IEEE754浮点数表示法标准)

浮点数与定点数表示法是我们在计算机中常用的表示方法 所以必须要弄懂原理,特别是在FPGA里面,由于FPGA不能像在MCU一样直接用乘除法。 定点数 首先说一下简单的定点数,定点数是克服整数表示法不能表...
  • xiabodan
  • xiabodan
  • 2014年05月05日 17:59
  • 1807

IEEE 754 Floating point Arithmetic

  • 2017年10月27日 17:43
  • 915KB
  • 下载

IEEE Standard for Binary Floating-Point Arithmetic

  • 2013年04月19日 11:08
  • 87KB
  • 下载

IEEE floating point

From Wikipedia, the free encyclopedia The IEEE Standard for Floating-Point Arithmetic (IEEE 754...
  • zhangchunlong423
  • zhangchunlong423
  • 2016年01月01日 21:51
  • 311

UVa 11809 Floating-Point Numbers

Problem Description 给你A*10^B这样格式的数据,让你求它的尾码和阶码 m*2^e, m,e分别为二进制,m从0.1开始后面1的个数为尾码,e为阶码 m*2^e ...
  • bbbbswbq
  • bbbbswbq
  • 2017年04月24日 20:51
  • 128

UVa 11809 Floating-Point Numbers (浮点数)

题意: 先介绍了浮点数的存储---用二进制数存储。浮点数(n)由尾数(mantissa)和阶码(exponent)组成。假设尾数和阶码的位数分别为M和E。按从左至右的顺序,首先是尾数的符号位(0代表...
  • Ramay7
  • Ramay7
  • 2015年12月15日 09:13
  • 388
您举报文章:IEEE Standard 754 Floating Point Numbers