关闭

POJ 1860 *** Currency Exchange

232人阅读 评论(0) 收藏 举报
分类:
题意:有N种货币类型,两种货币之间可以相互兑换。例如:价值V的货币A兑换货币B,需要扣除兑换税Cab,然后乘兑换率Rab才能得到兑换后的货币B,V'=(V-Cab)*Rab。一共有M个兑换点,每个兑换点都只可以兑换两种货币(每个兑换点的数据为A,B,Cab,Rab,Cba,Rba)。当拥有价值为V的S货币时,是否通过兑换能够得到价值大于V的S货币。

要求:1<=S<=N<=100, 1<=M<=100, V is real number, 0<=V<=10^3

想法:其实一开始并没有什么想法,后来就学习了一个Bellman-Ford算法,但是一直也没看明白。。。效率之低。。嗯。。后来就明白了。。。具体内容在代码里。。。贴代码。。

代码如下:

<pre class="html" name="code">#pragma warning(disable:4996)
#include<iostream>
#include<cstdio>
#include<cmath>
#include<stack>
#include<cstring>
#include<sstream>
#include<set>
#include<string>
#include<iterator>
#include<vector>
#include<map>
#include<algorithm>
using namespace std;

struct W {
	int i, j;
	double r, c;
}edge[260];

int main(void) {
	int n, m, s, a, b;
	double v, r1, r2, c1, c2;
//处理输入
	cin >> n >> m >> s >> v;
	for (int i = 0; i < m; ++i) {
		cin >> a >> b >> r1 >> c1 >> r2 >> c2;
		edge[i * 2].i = a;
		edge[i * 2].j = b;
		edge[i * 2].r = r1;
		edge[i * 2].c = c1;
		edge[i * 2 + 1].i = b;
		edge[i * 2 + 1].j = a;
		edge[i * 2 + 1].r = r2;
		edge[i * 2 + 1].c = c2;
	}
//建立权重数组
	double *dis=new double[n];
	memset(dis, 0, sizeof(double)*n);
	dis[s - 1] = v;
//开始寻找最小路径
	int uu, vv;
	bool flag = 1;//判断是否还能再继续松弛
	for (int i = 0; i < n&&flag; ++i){//进行n-1次松弛操作,得到最小路径
		flag = 0;//如果这次松弛操作不能再继续松弛,那么得到最小路径
		for (int j = 0; j < 2 * m; ++j) {
			uu = edge[j].j - 1, vv = edge[j].i - 1;
			if (dis[uu] < (dis[vv] - edge[j].c)*edge[j].r) {
				dis[uu] = (dis[vv] - edge[j].c)*edge[j].r;
				flag = 1;//这一次的松弛操作还可以松弛
			}
		}
	}
	if (flag)cout << "YES" << endl;//flag=1,说明即使做了n-1次松弛操作,路径还能继续松弛,说明还有正循环
	else cout << "NO" << endl;
	return 0;
}


0
0

猜你在找
【直播】机器学习&数据挖掘7周实训--韦玮
【套餐】系统集成项目管理工程师顺利通关--徐朋
【直播】3小时掌握Docker最佳实战-徐西宁
【套餐】机器学习系列套餐(算法+实战)--唐宇迪
【直播】计算机视觉原理及实战--屈教授
【套餐】微信订阅号+服务号Java版 v2.0--翟东平
【直播】机器学习之矩阵--黄博士
【套餐】微信订阅号+服务号Java版 v2.0--翟东平
【直播】机器学习之凸优化--马博士
【套餐】Javascript 设计模式实战--曾亮
查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:38658次
    • 积分:3322
    • 等级:
    • 排名:第10117名
    • 原创:302篇
    • 转载:46篇
    • 译文:1篇
    • 评论:4条
    最新评论