POJ 1860 *** Currency Exchange

原创 2015年11月18日 17:00:10
题意:有N种货币类型,两种货币之间可以相互兑换。例如:价值V的货币A兑换货币B,需要扣除兑换税Cab,然后乘兑换率Rab才能得到兑换后的货币B,V'=(V-Cab)*Rab。一共有M个兑换点,每个兑换点都只可以兑换两种货币(每个兑换点的数据为A,B,Cab,Rab,Cba,Rba)。当拥有价值为V的S货币时,是否通过兑换能够得到价值大于V的S货币。

要求:1<=S<=N<=100, 1<=M<=100, V is real number, 0<=V<=10^3

想法:其实一开始并没有什么想法,后来就学习了一个Bellman-Ford算法,但是一直也没看明白。。。效率之低。。嗯。。后来就明白了。。。具体内容在代码里。。。贴代码。。

代码如下:

<pre class="html" name="code">#pragma warning(disable:4996)
#include<iostream>
#include<cstdio>
#include<cmath>
#include<stack>
#include<cstring>
#include<sstream>
#include<set>
#include<string>
#include<iterator>
#include<vector>
#include<map>
#include<algorithm>
using namespace std;

struct W {
	int i, j;
	double r, c;
}edge[260];

int main(void) {
	int n, m, s, a, b;
	double v, r1, r2, c1, c2;
//处理输入
	cin >> n >> m >> s >> v;
	for (int i = 0; i < m; ++i) {
		cin >> a >> b >> r1 >> c1 >> r2 >> c2;
		edge[i * 2].i = a;
		edge[i * 2].j = b;
		edge[i * 2].r = r1;
		edge[i * 2].c = c1;
		edge[i * 2 + 1].i = b;
		edge[i * 2 + 1].j = a;
		edge[i * 2 + 1].r = r2;
		edge[i * 2 + 1].c = c2;
	}
//建立权重数组
	double *dis=new double[n];
	memset(dis, 0, sizeof(double)*n);
	dis[s - 1] = v;
//开始寻找最小路径
	int uu, vv;
	bool flag = 1;//判断是否还能再继续松弛
	for (int i = 0; i < n&&flag; ++i){//进行n-1次松弛操作,得到最小路径
		flag = 0;//如果这次松弛操作不能再继续松弛,那么得到最小路径
		for (int j = 0; j < 2 * m; ++j) {
			uu = edge[j].j - 1, vv = edge[j].i - 1;
			if (dis[uu] < (dis[vv] - edge[j].c)*edge[j].r) {
				dis[uu] = (dis[vv] - edge[j].c)*edge[j].r;
				flag = 1;//这一次的松弛操作还可以松弛
			}
		}
	}
	if (flag)cout << "YES" << endl;//flag=1,说明即使做了n-1次松弛操作,路径还能继续松弛,说明还有正循环
	else cout << "NO" << endl;
	return 0;
}


版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

poj 1860 Currency Exchange

链接:http://poj.org/problem?id=1860 题目大意是有N个国家让你通过一定本钱在各个国家之间通过汇率转换来达到收益的目的。 最短路问题,因为出现了环,所以用SPFA来判断正环...

poj1860Currency Exchange

这是一道很不错的题目,

POJ 1860 Currency Exchange(Bellman-Ford)

题目大意 给出n个顶点,m条边,原点s及初始金钱v。每条边有6个参数from, to, c1, r1, c2, r2。 假设在from出有v的金钱,从from -> to,金钱 = (v - c1) ...

POJ 1860 Currency Exchange (Bellman-Ford算法的运用)

题目类型  四边形不等式优化DP 题目意思 给出 n  (1 解题方法 很容易得出朴素的dp转移方程 dp[i][j] = Min( dp[i][k...

POJ-1860 Currency Exchange

Currency Exchange Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 20025...

Bellman-Ford-POJ-1860-Currency Exchange

Currency Exchange Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 23595 Acc...

POJ - 1860 Currency Exchange解题报告

Bellman-Ford

Bellman-ford变形 poj1860 Currency Exchange

//bellman-ford 算法 //判断有无环 //对于每条路进行更新,最大的环为n-1,所以最多进行n-1次更新(其实就是以s为原点的一个最短路的树) //那么对于第n次,还能进行更新那么就能存...

【POJ 1860】 Currency Exchange

【POJ 1860】 Currency Exchange 模拟货比交易 输入数据n 货币种类 m 交易种类 s 初始货币类型 v 初始持币数 m行分别为 A B(该种交易的两种货币A、B) RAB,...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)