[算法说明]
Sigma平滑滤波器是构造一个模板,比如3*3大小的模板,计算这个模板对应的像素的标准差d,然后根据统计学原理,得到一个置信区间v,假设3*3模板中心像素为p,则v大小范围为[p-d,p+d]。
我们判断3*3模板中对应像素是否落在置信区间v内,对于在v内的像素,我们求取他们的均值,然后,当前模板对应的中心像素的滤波值就等于这个均值。
图像表示如下:
/// <summary>
/// Sigma filter.
/// </summary>
/// <param name="src">The source image.</param>
/// <returns></returns>
public static WriteableBitmap SigmaFilterProcess(WriteableBitmap src)////Sigma滤波器
{
if (src != null)
{
int w = src.PixelWidth;
int h = src.PixelHeight;
WriteableBitmap filterImage = new WriteableBitmap(w, h);
byte[] temp = src.PixelBuffer.ToArray();
byte[] tempMask = (byte[])temp.Clone();
double[] Gray = new double[9];
double variance = 0;
int count = 0;
for (int j = 1; j < h - 1; j++)
{
for (int i = 1; i < w - 1; i++)
{
variance = 0;
count = 0;
int[] B = new int[9] { tempMask[i * 4 + j * w * 4], tempMask[(i - 1) * 4 + (j - 1) * w * 4], tempMask[i * 4 + (j - 1) * w * 4], tempMask[(i + 1) * 4 + (j - 1) * w * 4], tempMask[(i - 1) * 4 + j * w * 4], tempMask[(i + 1) * 4 + j * w * 4], tempMask[(i - 1) * 4 + (j + 1) * w * 4], tempMask[i * 4 + (j + 1) * w * 4], tempMask[(i + 1) * 4 + (j + 1) * w * 4] };
int[] G = new int[9] { tempMask[i * 4 + 1 + j * w * 4], tempMask[(i - 1) * 4 + 1 + (j - 1) * w * 4], tempMask[i * 4 + 1 + (j - 1) * w * 4], tempMask[(i + 1) * 4 + 1 + (j - 1) * w * 4], tempMask[(i - 1) * 4 + 1 + j * w * 4], tempMask[(i + 1) * 4 + 1 + j * w * 4], tempMask[(i - 1) * 4 + 1 + (j + 1) * w * 4], tempMask[i * 4 + 1 + (j + 1) * w * 4], tempMask[(i + 1) * 4 + 1 + (j + 1) * w * 4] };
int[] R = new int[9] { tempMask[i * 4 + 2 + j * w * 4], tempMask[(i - 1) * 4 + 2 + (j - 1) * w * 4], tempMask[i * 4 + 2 + (j - 1) * w * 4], tempMask[(i + 1) * 4 + 2 + (j - 1) * w * 4], tempMask[(i - 1) * 4 + 2 + j * w * 4], tempMask[(i + 1) * 4 + 2 + j * w * 4], tempMask[(i - 1) * 4 + 2 + (j + 1) * w * 4], tempMask[i * 4 + 2 + (j + 1) * w * 4], tempMask[(i + 1) * 4 + 2 + (j + 1) * w * 4] };
for (int n = 0; n < 9; n++)
{
Gray[n] = (double)B[n] * 0.114 + (double)G[n] * 0.587 + (double)R[n] * 0.299;
}
for (int m = 0; m < 9; m++)
{
variance += ((double)Gray[m] - Gray.Average()) * ((double)Gray[m] - Gray.Average()) / 9;
}
variance = Math.Sqrt(variance);
for (int m = 0; m < 9; m++)
{
if (Gray[m] < Gray[0]-variance && Gray[m] > variance + Gray[0])
{
R[m] = 0;
G[m] = 0;
B[m] = 0;
}
else count++;
}
temp[i * 4 + j * w * 4] = (byte)(B.Sum() / count);
temp[i * 4 + 1 + j * w * 4] = (byte)(G.Sum() /count);
temp[i * 4 + 2 + j * w * 4] = (byte)(R.Sum() / count);
}
}
Stream sTemp = filterImage.PixelBuffer.AsStream();
sTemp.Seek(0, SeekOrigin.Begin);
sTemp.Write(temp, 0, w * 4 * h);
return filterImage;
}
else
{
return null;
}
}
最后,分享一个专业的图像处理网站(微像素),里面有很多源代码下载: