Summer Training 06 - Amritapuri 2012 总结
题意:
给出一个表达式,只含有x,M,m,分别代表[0,1]上均匀分布的随机变量,M取max{y1,y2},m取min{y1,y2}。求该表达式的期望。
表达式例如:MmxMxxmxx,表示Max{ min{x1, Max{x2,x3} }, min{x4,x5} },x1~5相互独立
解法:
先求出两个相互独立的随机变量的概率分布函数F(x),再求导得概率密度f(x),对xf(x)在[0,1]上求积分,即为期望。
利用概率分布函数的定义可知,
Fmin(x1,x2)=1-(1-Fx1)*(1-Fx2),
Fmax(x1,x2)=Fx1*Fx2,
所以只需要记住当前表达式中x的系数和次数,一层一层递推,就能求出整个表达式的F(x)
代码:
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define maxn 105
#define EPS 1e-7
using namespace std;
int n;
char st[maxn];
int stop,num[maxn],l[maxn],r[maxn],sta[maxn];
struct No
{
int sum;
long long co[maxn];
void init()
{
sum=0;
memset(co,0,sizeof(co));
}
};
void addEdge(int u,int v)
{
if (!num[u]) l[u]=v;
else r[u]=v;
num[u]++;
}
void build()
{
stop=0;
for (int i=0;st[i];i++)
{
if (st[i]=='x')
{
addEdge(sta[stop],i);
while (num[sta[stop]]==2&&sta[stop])
{
addEdge(sta[stop-1],sta[stop]);
--stop;
}
}
else sta[++stop]=i;
}
}
No dfs(int u)
{
No res;
res.init();
if (st[u]=='x')
{
res.sum=1;
res.co[1]=1;
return res;
}
No L=dfs(l[u]);
No R=dfs(r[u]);
if (st[u]=='m')
{
for (int i=0;i<=max(L.sum,R.sum);i++)
res.co[i]=L.co[i]+R.co[i];
for (int i=0;i<=L.sum;i++)
for (int j=0;j<=R.sum;j++)
res.co[i+j]-=L.co[i]*R.co[j];
}
else
{
for (int i=0;i<=L.sum;i++)
for (int j=0;j<=R.sum;j++)
res.co[i+j]+=L.co[i]*R.co[j];
}
res.sum=L.sum+R.sum;
return res;
}
int main()
{
//freopen("/home/christinass/code/in.txt","r",stdin);
int cas;
scanf("%d",&cas);
while (cas--)
{
scanf("%s",st);
memset(num,0,sizeof(num));
build();
No res=dfs(0);
long double ans=0;
for (int i=0;i<=res.sum;i++)
ans+=(long double)res.co[i]*i/(i+1);
cout<<ans<<"\n";
}
return 0;
}