Kalman滤波小结

原创 2015年11月19日 21:41:25

LinearGauss DM——线性卡尔曼滤波

一直在思考线性卡尔曼滤波器(KF)究竟在做一件什么事,为什么KF就是最佳线性滤波器呢,又何以50多年来被广泛应用。一直以为KF仅仅是一个线性滤波器嘛,然而我却得到了一些很可怕的结论,原来KF背后是这么伟大的思想。其基本公式如下:



figure.1 状态空间模型


Filtering的概率描述

KF采用状态空间模型,即亦称动态系统理论,该模型的精华——如果所有的隐状态都已知,则观测值相互独立。由于KF的变量连续,故其概率分布为函数形式;若变量离散,则概率分布为矩阵形式。

说了这些,那么滤波和这些概率有什么关系,求解状态空间模型中的,即完成滤波的过程。那么究竟怎么求呢,为什么求解状态空间模型中的,就可以完成滤波过程呢。这是由于在状态空间中,

(1)    当 t > T 时,超出样本的观测区间,是对未来状态的估计问题,称为预测(Prediction);    

(2)    当 t = T 时,估计观测区间的最终时点,即对现在状态的估计问题,称为滤波(Filtering); 

(3)    当 t < T 时,是基于利用现在为止的观测值对过去状态的估计问题,称为光滑(Smoothing)。

       由表1可知,KF的参数为等六个变量,我们将从此出发。

 

Kalman的update和prediction

既然求解状态空间模型中的,就完成滤波的过程。所以有

参考文献

[1]陈学华,状态空间模型理论与算法及其在金融计量中的应用,博士论文,暨南大学,2007

[2]杨小军,基于粒子滤波的混合估计理论与应用,博士论文,西北工业大学,2006

[3]于艳萍,郭鹏辉,基于状态空间模型的经济分析,厦门大学学报:自然科学报,2006年

B05期

[4]胡士强,敬忠良,粒子滤波算法综述,控制与决策,2005 (4)

[5]陆昕为,演化卡尔曼滤波及其在时间序列分析中的应用,硕士论文,中国地质大学,2007

[6]彭丁聪,卡尔曼滤波的基本原理及应用,软件导刊,第8卷第11期,2009年11月

[7]付剑茹,张宗成,时变最优套期保值比估计及比较研究,管理科学学报,第13卷第12期,2010年12月

[8] 龚文引,演化Kalman滤波及其应用研究[D], 武汉:中国地质大学研究生院2007.

[9] A. Doucet, N. de Freitas, and N.Gordon, Eds., Sequential Monte Cario methods in practice, Springer Verlag, NewYork, 2001

[10]Andrew Harvey, Siem Jan Koopman andNeil Shephard, State Space and Unobserved Component Models: Theory andApplications [M]. Cambridge University Press, 2004

[11] B. Lauterbach and P Schultz. PricingWarrants: An Empirical Study of the Black-Scholes Model and Its Alternatives[J]. Journal of Finance, 1990, 45: 1181一1209

[12] Buetow, Gerald W, Jr. Johnson, RobertR, and Runkle Daviad E, The Inconsistency of Return-based Style Analysis. [J].Journal of Portfolio Management, Spring2000,61-77

[13] Chan,  Louis K.C, Chen, Hsiu-Lang, and Lakonishok, Josef.,On Mutual Fund Investment Styles.[J]. National Bureau of Economic ResearchWorking Paper 7215, July, 1999

[14] D Q Mayne,  A solution of the smoothing problem forlinear dynamic systems. In

Automatics, volume 4, pages 73-92, 1966

[15] D. Whitley, A genetic algorithmtutorial, Stat. Comput, 4:65-85, 1994

[16] G. Kitagawa, Monte Carlo filter and smoother for non-Gaussian nonlinear state

models, Journal of Computational andGraphical Statistics, vol. 5, no. 1, pp. 1-25, 1996

[17] GREG WELCH,GARY B1SHOP, An Introductionto the kalman filter[J].Department of Computer Science University of forthCarolina at Chapel Hill Chapel Hi11,NC27599-3175,2006.

[18]Lobosco,Angelo and DiBartolomeo Dan,Approximatingthe Confidence Intervals for Sharp Style Weights. [J]. Financial AnalystsJournal, 80-85, July/August 1997

 

 

 


版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

卡尔曼滤波(Kalman Filter) 的进一步讨论

我们在上一篇文章中通过一个简单的例子算是入门卡尔曼滤波了,本文将以此为基础讨论一些技术细节。卡尔曼滤波(Kalman Filter) http://blog.csdn.net/baimafujinji...

卡尔曼滤波(Kalman filtering)小结

最近项目用到了kalman滤波,本博文简单介绍下卡尔曼滤波器的概念、原理和应用,做个小结。概念卡尔曼滤波(Kalman filtering)一种利用线性系统状态方程,通过系统输入输出观测数据,对系统状...

kalman 滤波 演示与opencv代码

在机器视觉中追踪时常会用到预测算法,kalman是你一定知道的。它可以用来预测各种状态,比如说位置,速度等。关于它的理论有很多很好的文献可以参考。opencv给出了kalman filter的一个实现...
  • Armily
  • Armily
  • 2013-05-18 11:18
  • 1189

kalman滤波 简介

1.简介(Brief Introduction) 在学习卡尔曼滤波器之前,首先看看为什么叫“卡尔曼”。跟其他著名的理论(例如傅立叶变换,泰勒级数等等)一样,卡尔曼也是一个人的名字,而跟他...

卡尔曼(Kalman) 滤波跟踪一个旋转的点程序

Kalman 滤波器跟踪一个旋转的点

学习OpenCV——Kalman滤波

背景: 卡尔曼滤波是一种高效率的递归滤波器(自回归滤波器), 它能够从一系列的不完全及包含噪声的测量中,估计动态系统的状态。卡尔曼滤波的一个典型实例是从一组有限的,包含噪声的,对物体位置的观察序...

OpenCV卡尔曼滤波(Kalman Filter)详细注释以及#include "cvx_defs.h"的问题

//本代码是关于learning OpenCV 394页的代码写的注释(前提:我买的书不是盗版的话。。。。) #include "cv.h" #include "highgui.h" #includ...

kalman滤波学习笔记

一、问题建模 系统状态方程:X(k)=AX(k-1)+B U(k)+W(k)  测量值:Z(k)=H X(k)+V(k)  其中,X(k)是k时刻的系统状态,U(k)是k时刻对系统的控制量。A和B是系...

抛一个kalman滤波跟踪的封装类 c++版opencv实现

#ifndef KALMAN_H #define KALMAN_H #include #include #include #include class Kalman { ...

自适应四元数kalman滤波matlab学习笔记(一)

1、Matlab中的clc,clear,close命令区别? clc:清除命令窗口的内容,对工作环境中的全部变量无任何影响; clear:清除工作空间的所有变量; clear all:清除工作空...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)