经典的机器学习方面源代码库(非常全,数据挖掘,计算机视觉,模式识别,信息检索相关领域都适用的了)

转载 2015年11月26日 12:14:28

转自http://windshg.iteye.com/blog/1756297

编程语言:搞实验个人认为当然matlab最灵活了(但是正版很贵),但是更为前途的是python(numpy+scipy+matplotlib)和C/C++,这样组合既可搞研究,也可搞商业开发,易用性不比matlab差,功能组合更为强大,个人认为,当然R和java也不错.

1.机器学习开源软件网(收录了各种机器学习的各种编程语言学术与商业的开源软件)

http://mloss.org

2 偶尔找到的机器学习资源网:(也非常全,1和2基本收录了所有ML的经典开源软件了)

http://www.dmoz.org/Computers/Artificial_Intelligence/Machine_Learning/Software/

3 libsvm (支持向量机界最牛的,不用多说了,台湾大学的林教授的杰作)

http://www.csie.ntu.edu.tw/~cjlin/libsvm/

4 WEKA (基于java的机器学习算法最全面最易用的开源软件)

http://www.cs.waikato.ac.nz/ml/weka/

5 scikit (本人最喜欢的一个基于python的机器学习软件,代码写得非常好,而且官方的文档非常全,所有都有例子,算法也齐全,开发也活跃
,强烈推荐给大家用)

http://scikit-learn.org/stable/

6 OpenCv(最牛的开源计算机视觉库了,前途无可限量,做图像处理与模式识别的一定要用,总不能整天抱着matlab做实验和工业界脱节吧,但是有一定难度)

http://opencv.willowgarage.com/wiki/

7 Orange (基于c++和python接口的机器学习软件,界面漂亮,调用方便,可以同时学习C++和python,还有可视化的功能,)

http://orange.biolab.si/

8 Mallet (基于JAVA实现的机器学习库,主要用于自然语言处理方面,特色是马尔可夫模型和随机域做得好,可和WEKA互补)

http://mallet.cs.umass.edu/

9 NLTK(PYTHON的自然处理开源库,非常易用,也强大,还有几本orelly的经典教程)

http://nltk.org/

10 lucene(基于java的包括nutch,solr,hadoop,mahout等全套,是做信息检索和搜索引擎的同志们必学的开源软件了,学JAVA的必学)

http://lucene.apache.org/

相关文章推荐

经典的机器学习方面源代码库(数据挖掘,计算机视觉,模式识别,信息检索)

文章来自:http://www.cnblogs.com/kshenf/archive/2012/06/14/2548708.html 今天给大家介绍一下经典的开源机器学习软件: 编程语言:搞实验...

经典的机器学习方面源代码库(数据挖掘,计算机视觉,模式识别,信息检索)

文章来自:http://www.cnblogs.com/kshenf/archive/2012/06/14/2548708.html        今天给大家介绍一下经典的开源机器学习软件:...

信息检索笔记-索引构建

如何构建倒排索引,我们将这个过程叫做“索引构建”。如果我们的文档很多,这样索引就一次性装不下内存,该如何构建。 硬件的限制     我们知道ram读写是随机的操作,只要输入相应的地址单元就能瞬间将...

JSON概括

JSON,全名是javascript object notation。是一种用字符串来描述对象和数组的语言规范。并且JSONORG还提供了JS的实现,可以将JS中的数组和对象与JSONString之间...

经典的机器学习方面源代码库(非常全,数据挖掘,计算机视觉,模式识别,信息检索相关领域都适用的了)

今天给大家介绍一下经典的开源机器学习软件: 编程语言:搞实验个人认为当然matlab最灵活了(但是正版很贵),但是更为前途的是python(numpy+scipy+matplotlib)和C/C++...

经典的机器学习方面源代码库(非常全,数据挖掘,计算机视觉,模式识别,信息检索相关领域都适用的了)

原文链接在这里-> http://www.cnblogs.com/kshenf/archive/2012/06/14/2548708.html 今天给大家介绍一下经典的开源机器学习软件: ...

模式识别,计算机视觉,计算机图形学,智能控制,信号处理,语音识别,知识处理,机器学习,数据挖掘领域区别

模式识别,计算机视觉,智能控制,信号处理,语音识别,知识处理,机器学习,数据挖掘之间的联系。

机器学习、数据挖掘、计算机视觉等领域经典书籍推荐(一)

人工智能、机器学习、模式识别、计算机视觉、数据挖掘、信息检索、自然语言处理等作为计算机科学重要的研究分支,不论是学术界还是工业界,有关这方面的研究都在如火如荼地进行着,学习这些方面的内容有一些经典书籍...

机器学习、数据挖掘、计算机视觉等领域经典书籍推荐

人工智能、机器学习、模式识别、计算机视觉、数据挖掘、信息检索、自然语言处理等作为计算机科学重要的研究分支,不论是学术界还是工业界,有关这方面的研究都在如火如荼地进行着,学习这些方面的内容有一些经典书籍...
  • liujf
  • liujf
  • 2013-08-11 22:14
  • 678
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)