图论——握手定理

转载 2013年12月24日 08:56:55

三.顶点的度数与握手定理


1.顶点的度数

 定义14.4设G=<V,E>为一无向图,v∈V,称v作为边的端点次数之和为v的度数,简称为度,记做 dG(v),在不发生混淆时,简记为d(v).设D=<V,E>为有向图,v∈V,称v作为边的始点次数之和为v的出度,记做(v),简记作d+(v).称v作为边的终点次数之和为v的入度,记做(v),简记作d-(v),称d+(v)+d-(v)为v的度数,记做d(v).


2.握手定理

 定理14.1(握手定理) 设G=<V,E>为任意无向图,V={v1,v2,…,vn},|E|=m,则
      =2m

  G中每条边(包括环)均有两个端点,所以在计算G中各顶点度数之和时,每条边均提供2度,当然,m条边,共提供2m度。

 定理14.2(握手定理) 设D=<V,E>为任意有向图,V={v1,v2,…,vn},|E|=m,则
      =2m,且==m.

  本定理的证明类似于定理14.1

 握手定理的推论任何图(无向的或有向的)中,奇度顶点的个数是偶数。

  设G=<V,E>为任意一图,令
      V1={v|v∈V∧d(v)为奇数}
      V2={v|v∈V∧d(v)为偶数}

  则V1∪V2=V,V1∩V2=,由握手定理可知
      2m==+

  由于2m,均为偶数,所以为偶数,但因V1中顶点度数为奇数,所以|V1|必为偶数。

  握手定理也称为图论的基本定理,图中顶点的度数是图论中最为基本的概念之一。

点击打开链接


相关文章推荐

离散数学图论经典问题之握手定理

今天学习了图论的一些经典问题,感觉挺有意思的,伟人不愧称之为伟人,想问题的方式果然与常人不同。好了,不说废话了,让我们回到今天的正题,握手定理。首先我认为学到一种新知识最好的检测方式就是利用该知识来解...

常用的离散数学中的几个概念以及自己的几点拙见

1、等价关系(Equivalence Relation) 设~是集合G上的一个二元关系,若满足以下条件: (1)自反性:对任何a∈G,有a~a (2)对称性:对任何a,b∈G,有a~b,则b~a...

图论-度序列可图性判断(Havel-Hakimi定理)

1、度序列:

图论之Havel-Hakimi定理运用

题目链接 Frogs' Neighborhood Time Limit: 5000MS   Memory Limit: 10000K Total Submissions: 7933  ...

POJ 1659 Frogs' Neighborhood (Havel-Hakimi 定理)图论

链接:http://poj.org/problem?id=1659 Description 未名湖附近共有N个大小湖泊L1, L2, ..., Ln(其中包括未名湖),每个湖泊Li里住着一...

中国剩余定理——一次同余方程

  • 2014年08月09日 09:12
  • 586B
  • 下载

中国剩余定理——另一种证明

  • 2008年06月16日 12:31
  • 59KB
  • 下载

《图论》——深度优先搜索算法(DFS)

深度优先搜索遍历类似于树的先序遍历。假定给定图G的初态是所有顶点均未被访问过,在G中任选一个顶点i作为遍历的初始点,则深度优先搜索递归调用包含以下操作: (1)访问搜索到的未被访问的邻接点; (2)将...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:图论——握手定理
举报原因:
原因补充:

(最多只允许输入30个字)