Visual Tracking Resources

转载 2015年07月07日 17:21:01

这个应该是目前最全的Tracking相关的文章了,转载请注明出处。

转自:http://blog.csdn.net/minstyrain/article/details/38640541

、Surveyand benchmark:

1.      PAMI2014:VisualTracking_ An Experimental Survey,代码:http://alov300pp.joomlafree.it/trackers-resource.html

2.      CVPR2013:Online Object Tracking: A Benchmark(需翻墙)

3.      SignalProcessing  2011:Video Tracking Theory andPractice

4.      ACCV2006Tutorials-Advances in VisualTracking:中文:视觉跟踪的进展

5.      Evaluationof an online learning approach for robust object tracking

 

、研究团体:

1.      Universityof California at Merced:Ming-HsuanYang视觉跟踪当之无愧第一人,后面的人基本上都和气其有合作关系,他引近9000

PublicationsPAMI:6,CVPR:26,ECCV:17,BMCV:6,NIPS:6,IJCV:3,ACCV:3

代表作:RobustVisual Tracking via Consistent Low-Rank Sparse Learning

FCT,IJCV2014:FastCompressive Tracking

RST,PAMI2014:RobustSuperpixel Tracking; SPT,ICCV2011, Superpixeltracking

SVD,TIP2014:LearningStructured Visual Dictionary for Object Tracking

ECCV2014: SpatiotemporalBackground Subtraction Using Minimum Spanning Tree and Optical Flow

PAMI2011:RobustObject Tracking with Online Multiple Instance Learning

MIT,CVPR2009: Visualtracking with online multiple instance learning

IJCV2008: IncrementalLearning for Robust Visual Tracking

 

2.      SeoulNational University Professor:KyoungMuLee2013年在PAMI上发表5篇,至今无人能及

文献列表PAMI:13,CVPR:30,ECCV:12,ICCV:8,PR:4

PAMI2014:A GeometricParticle Filter for Template-Based Visual Tracking

ECCV2014: Robust Visual Tracking with Double Bounding Box Model

PAMI2013:HighlyNonrigid Object Tracking via Patch-based Dynamic Appearance Modeling

CVPR2014: Interval Tracker: Tracking by Interval Analysis

CVPR2013: MinimumUncertainty Gap for Robust Visual Tracking

CVPR2012:RobustVisual Tracking using Autoregressive Hidden Markov Model

VTS,ICCV2011:Tracking by Sampling Trackers.

VTD,CVPR2010: VisualTracking Decomposition

TST,ICCV2011:Tracking by sampling trackers

3.      TempleUniversity,凌海滨

Publication List PMAI:4,CVPR:19,ICCV:17,ECCV:5,TIP:9

CVPR2014:Multi-targetTracking with Motion Context in Tenor Power Iteration

ECCV2014:TransferLearning Based Visual Tracking with Gaussian Process Regression

ICCV2013:Findingthe Best from the Second Bests - Inhibiting Subjective Bias in Evaluation ofVisual Tracking Algorithms

CVPR2013: Multi-targetTracking by Rank-1 Tensor Approximation

CVPR2012:RealTime Robust L1 Tracker Using Accelerated Proximal Gradient Approach

TIP2012: Real-timeProbabilistic Covariance Tracking with Efficient Model Update

ICCV2011: BlurredTarget Tracking by Blur-driven Tracker

PAMI2011ICCV2009: RobustVisual Tracking and Vehicle Classification via Sparse Representation

ICCV2011:RobustVisual Tracking using L1 Minimization

L1O,CVPR2011: Minimumerror bounded efficient l1 tracker with occlusion detection

L1T, ICCV2009:Robustvisual tracking using l1 minimization

4.      HongKong Polytechnic University AssociateProfessor: Lei Zhang

PapersPAMI:2,CVPR:18,ICCV:14,ECCV:12,ICPR:6,PR:28,TIP:4

STC,ECCV2014: FastTracking via Dense Spatio-Temporal Context Learning

FCT,PAMI2014,ECCV2012:Fast CompressiveTracking, Minghsuan Yang

IETComputer Vision2012:Scale and Orientation Adaptive Mean Shift Tracking

IJPRAI2009:RobustObject Tracking using Joint Color-Texture Histogram

5.      大连理工大学教授 卢湖川国内追踪领域第一人

CVPR2014:VisualTracking via Probability Continuous Outlier Model

TIP2014:VisualTracking via Discriminative Sparse Similarity Map

TIP2014: RobustSuperpixel Tracking

TIP2014: RobustObject Tracking via Sparse Collaborative Appearance Model

CVPR2013: LeastSoft-threshold Squares Tracking, MinghsuanYang

TIP2013:Online Object Trackingwith Sparse Prototypes, Minghsuan Yang

SignalProcessing Letters2013: Graph-RegularizedSaliency Detection With Convex-Hull-Based Center Prior

SignalProcessing2013: On-line LearningParts-based Representation via Incremental Orthogonal Projective Non-negativeMatrix Factorization

CVPR2012:RobustObject Tracking viaSparsity-based Collaborative Model, MinghsuanYang

CVPR2012:VisualTracking via Adaptive Structural Local Sparse Appearance Model, MinghsuanYang

SignalProcessing Letters 2012:Object tracking via 2DPCA and L1-regularization

IETImage Processing 2012:Visual Tracking via Bag of Features

ICPR2012:Superpixel Level Object Recognition Under Local Learning Framework

ICPR2012: Fragment-BasedTracking Using Online Multiple Kernel Learning

ICPR2012: ObjectTracking Based On Local Learning

ICPR2012: ObjectTracking with L2_RLS

ICPR2011:ComplementaryVisual Tracking

FG2011:OnlineMultiple Support Instance Tracking

SignalProcessing2010: A novel methodfor gaze tracking by local pattern model and support vector regressor

ACCV2010: OnFeature Combination and Multiple Kernel Learning for Object Tracking

ACCV: RobustTracking Based on Pixel-wise Spatial Pyramid and Biased Fusion

ACCV2010: HumanTracking by Multiple Kernel Boosting with Locality Affinity Constraints

ICCV2011:SuperpixelTracking, Minghsuan Yang

ICPR2010: RobustTracking Based on Boosted Color Soft Segmentation and ICA-R

ICPR2010: IncrementalMPCA for Color Object Tracking

ICPR2010: Bagof Features Tracking

ICPR2008: GazeTracking By Binocular Vision and LBP Features

6.      南京信息工程大学教授,KaiHua Zhang

7.      OregonstateProfessor,Sinisa Todorovic由视频分割转向Tracking

CSL,CVPR2014: Multi-ObjectTracking via Constrained Sequential Labeling

CVPR2011:MultiobjectTracking as Maximum Weight Independent Set

8.      GrazUniversity of Technology, Austria,Horst Possegger博士

CVPR2014:OcclusionGeodesics for Online Multi-Object Tracking

CVPR2013: RobustReal-Time Tracking of Multiple Objects by Volumetric Mass Densities

9.      马里兰大学Zdenek Kalal博士

TLD,PAMI2011: Tracking-Learning-Detection

TIP2010: Face-TLD:Tracking-Learning-Detection Applied to Faces

ICPR2010:Forward-BackwardError: Automatic Detection of Tracking Failures

CVPR2010: P-N Learning:Bootstrapping Binary Classifiers by Structural Constraints

BMVC2008: Weighted Sampling forLarge-Scale Boosting

中文讲解:

TLD视觉跟踪算法

TLD源码深度分析

庖丁解牛TLD

TLD(Tracking-Learning-Detection)学习与源码理解

 

三、其他早期工作:

Tracking of a Non-Rigid ObjectviaPatch-based Dynamic Appearance Modeling and Adaptive Basin Hopping Monte CarloSampling

tracking-by-detection

粒子滤波演示与opencv代码

opencv学习笔记-入门(6)-camshift

Camshift算法原理及其Opencv实现

Camshift算法 

CamShift算法,OpenCV实现1--Back Projection

目标跟踪学习笔记_2(particle filter初探1)

目标跟踪学习笔记_3(particle filter初探2)

目标跟踪学习笔记_4(particle filter初探3)

目标跟踪学习系列一:on-line boosting and vision 阅读

Resources in Visual Tracking

应该是目前最全的Tracking的文章了。 一、Surveyand benchmark: 1.      PAMI2014:VisualTracking_ An Experimental Su...

视频跟踪领域总结全面 Resources in Visual Tracking

http://blog.csdn.net/minstyrain/article/details/38640541 这个应该是目前最全的Tracking相关的文章了,转载请注明出处。 一、S...

深度学习tracking学习笔记(2):图像/视觉显著性检测技术发展情况梳理(Saliency Detection、Visual Attention)

reference: http://blog.csdn.net/anshan1984/article/details/8657176 http://blog.csdn.net/huangbo10/...

visual tracking 入门理解---by香蕉麦乐迪

视觉跟踪:对运动目标的跟踪 应用场景:导弹的制导(比如想轰炸某个桥),周界防范; 技术方法: 第一次的理解: 1、基于检测的方法 帧差法:两帧之间做差,适用于背景不变,目标运动的情况,鲁棒性不好 背景...

目标跟踪学习系列五:Real-time visual tracking via online weighted multiple instance learning(WMIL)学习

WMIL 学习

Learning Multi-Domain Convolutional Neural Networks for Visual Tracking

Learning Multi-Domain Convolutional Neural Networks for Visual Tracking 视觉跟踪的一个难点是很难收集到大规模的训练数据 现...

Visual Tracking via Adaptive Structural Local Sparse Appearance Model

Visual Tracking via Adaptive Structural Local Sparse Appearance Model 使用自适应的结构化局部外观模型的视觉跟踪...

Visual Tracking via Adaptive Structural Local Sparse Appearance Model

Visual Tracking via Adaptive Structural Local Sparse Appearance Model

杂记:Visual Tracking + Object Proposals + Features + Coding

这篇文章主要是做一个笔记式的讲解最近关注的一些东西,包括基于核相关滤波器的目标跟踪算法、EdgeBoxes目标假设算法、Color Names特征描述方法,最后再讲讲我对如何进行高效率编程的理解...

DSST(Accurate Scale Estimation for Robust Visual Tracking 代码解读(2)

版权声明:本文为博主原创文章,未经博主允许不得转载。转载请注明出处:http://blog.csdn.net/autocyz?viewmode=contents——autocyz 目...
  • zxxuan
  • zxxuan
  • 2017年03月03日 11:00
  • 396
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:Visual Tracking Resources
举报原因:
原因补充:

(最多只允许输入30个字)