tensorflow入门5 从一个二分类问题看rnn的结构

之前在笔记本上安上了tensorflow1.0版本,可以在本地运行tf的程序。

今天看了一个rnn的例子,关于线性和非线性序列的分类问题。对于一个list,如果形如[1,2,3,4,5]这种有序的就说是分为class 0,[1,3,10,7]这种随机生成的序列就分为class 1。通过这个例子,对rnn的理解更明确了。

代码解析如下:

生成数据:

class ToySequenceData(object):
    def __init__(self, n_samples=1000, max_seq_len=20, min_seq_len=3,
                 max_value=1000):
        self.data = []
        self.labels = []
        self.seqlen = []
        for i in range(n_samples):
            len = random.randint(min_seq_len, max_seq_len)
            self.seqlen.append(len)
            if random.random() < .5:
                rand_start = random.randint(0, max_value - len)
                s = [[float(i)/max_value] for i in range(rand_start, rand_start + len)]
                s += [[0.] for i in range(max_seq_len - len)]
                self.data.append(s)
                self.labels.append([1., 0.])
            else:
                s = [[float(random.randint(0, max_value))/max_value] for i in range(len)]
                s += [[0.] for i in range(max_seq_len - len)]
                self.data.append(s)
                self.labels.append([0., 1.])
        self.batch_id = 0

    def next(self, batch_size):
        if self.batch_id == len(self.data):
            self.batch_id = 0
        batch_data = (self.data[self.batch_id:min(self.batch_id + batch_size, len(self.data))])
        batch_labels = (self.labels[self.batch_id:min(self.batch_id + batch_size, len(self.data))])
        batch_seqlen = (self.seqlen[self.batch_id:min(self.batch_id + batch_size, len(self.data))])
        self.batch_id = min(self.batch_id + batch_size, len(self.data))
        return batch_data, batch_labels, batch_seqlen
ToySequenceData类初始化函数说明了数据的生成方式,数据的特点为:长度随机,但最后填充0到max_seq_len,对于class0类别的数据初始值随机生成。next函数的功能是取出一批数据和它的类别以及实际长度。


设置参数:

learning_rate = 0.01
training_iters = 1000000
batch_size = 128
display_step = 10
seq_max_len = 20
n_hidden = 64
n_classes = 2
trainset = ToySequenceData(n_samples=1000, max_seq_len=seq_max_len)
testset = ToySequenceData(n_samples=500, max_seq_len=seq_max_len)
设置学习率,迭代次数,批大小,display_step,一个list的最大长度,隐藏层神经元数,类别数。生成1000个训练集和500测试集。


设置占位符及rnn隐藏层到输出层的参数:

x = tf.placeholder("float", [None, seq_max_len, 1])
y = tf.placeholder("float", [None, n_classes])
seqlen = tf.placeholder(tf.int32, [None])

weights = {
    'out': tf.Variable(tf.random_normal([n_hidden, n_classes]))
}
biases = {
    'out': tf.Variable(tf.random_normal([n_classes]))
}
x的形状为[None,seq_max_len,1],因为对于一批数据,x的三个维度分别表示[batch_size,n_steps,n_input]如图所示:

seqlen代表序列的实际长度。weights的形状为[n_hidden,n_class]代表隐藏层到输出层的权重矩阵。


rnn函数:

def dynamicRNN(x, seqlen, weights, biases):
    x = tf.transpose(x, [1, 0, 2])
    x = tf.reshape(x, [-1, 1])
    x = tf.split(axis=0, num_or_size_splits=seq_max_len, value=x)
    lstm_cell = tf.contrib.rnn.BasicLSTMCell(n_hidden)
    outputs, states = tf.contrib.rnn.static_rnn(lstm_cell, x, dtype=tf.float32,sequence_length=seqlen)
    print(outputs)
    outputs = tf.stack(outputs)
    print(outputs)
    outputs = tf.transpose(outputs, [1, 0, 2])
    print(outputs)
    batch_size = tf.shape(outputs)[0]
    print(batch_size)#128
    index = tf.range(0, batch_size) * seq_max_len + (seqlen - 1)#?
    outputs = tf.gather(tf.reshape(outputs, [-1, n_hidden]), index)
    print(outputs)
    return tf.matmul(outputs, weights['out']) + biases['out']

取名为dynamicRNN可能是因为数据的生成是动态的,函数先是对输入数据进行处理。

上面说明了输入数据的形式,循环神经网络要求输入要把循环维度放在第一位。比如对于一个list=[1,2,3,4,5,6,7,8],循环次数是8,要分别把i(i=1~8)作为第i次输入。如果输入是一批数据list1=[1,2,3,4,5,6,7,8],list2=[2,1,5,3,1,4,7,2],就把数据处理成[[1,2],[2,1],[3,5],[4,3],[5,1],[6,4],[7,7],[8,2]],投入训练。

tf.contrib.rnn.BasicLSTMCell和tf.contrib.rnn.static_rnn函数是tf中创建lstm单元和对输入数据运行rnn的函数。rnn的特点是一个单元在循环时,共享三个矩阵的权重(三个矩阵在之前博客的rnn展开图中可以看到)。

函数的中间部分是对输出的outputs进行处理。从outputs的打印结果来看:

[<tf.Tensor 'rnn/cond/Merge:0' shape=(?, 64) dtype=float32>, <tf.Tensor 'rnn/cond_1/Merge:0' shape=(?, 64) dtype=float32>, <tf.Tensor 'rnn/cond_2/Merge:0' shape=(?, 64) dtype=float32>, <tf.Tensor 'rnn/cond_3/Merge:0' shape=(?, 64) dtype=float32>, <tf.Tensor 'rnn/cond_4/Merge:0' shape=(?, 64) dtype=float32>, <tf.Tensor 'rnn/cond_5/Merge:0' shape=(?, 64) dtype=float32>, <tf.Tensor 'rnn/cond_6/Merge:0' shape=(?, 64) dtype=float32>, <tf.Tensor 'rnn/cond_7/Merge:0' shape=(?, 64) dtype=float32>, <tf.Tensor 'rnn/cond_8/Merge:0' shape=(?, 64) dtype=float32>, <tf.Tensor 'rnn/cond_9/Merge:0' shape=(?, 64) dtype=float32>, <tf.Tensor 'rnn/cond_10/Merge:0' shape=(?, 64) dtype=float32>, <tf.Tensor 'rnn/cond_11/Merge:0' shape=(?, 64) dtype=float32>, <tf.Tensor 'rnn/cond_12/Merge:0' shape=(?, 64) dtype=float32>, <tf.Tensor 'rnn/cond_13/Merge:0' shape=(?, 64) dtype=float32>, <tf.Tensor 'rnn/cond_14/Merge:0' shape=(?, 64) dtype=float32>, <tf.Tensor 'rnn/cond_15/Merge:0' shape=(?, 64) dtype=float32>, <tf.Tensor 'rnn/cond_16/Merge:0' shape=(?, 64) dtype=float32>, <tf.Tensor 'rnn/cond_17/Merge:0' shape=(?, 64) dtype=float32>, <tf.Tensor 'rnn/cond_18/Merge:0' shape=(?, 64) dtype=float32>, <tf.Tensor 'rnn/cond_19/Merge:0' shape=(?, 64) dtype=float32>]
Tensor("stack:0", shape=(20, ?, 64), dtype=float32)
Tensor("transpose_1:0", shape=(?, 20, 64), dtype=float32)
Tensor("strided_slice:0", shape=(), dtype=int32)
Tensor("Gather:0", shape=(?, 64), dtype=float32)
tf.contrib.rnn.static_rnn函数的返回值是n_steps个[batch_size,n_hidden]形状的张量,也就是每次循环都会有一个输出结果,结果的形状是这一批数据的数量*隐藏层单元的个数。

通过transpose操作将输出形状变回为[batch_size,n_steps,n_hidden],再reshape成为[batch_size*n_steps,n_hidden]。
对于中间index理解,通过实验更加清楚。

import tensorflow as tf
x = tf.placeholder(tf.int32,[None])
with tf.Session() as sess:
    print(sess.run(tf.range(0,4)*4+x-1,feed_dict={x:[1,2,3,4]}))
结果为:
[ 0  5 10 15]
sess = tf.Session()
params = tf.constant([6,3,4,1,5,9,10])
indices = tf.constant([2,0,2,5])
output = tf.gather(params,indices)
print(sess.run(output))
sess.close()
结果 为:

[4 6 4 9]

可以看出index和gather操作是为了得到这一批数据中,每个list在最后一次有效循环(list长度)结束时的输出值。

训练和测试:

pred = dynamicRNN(x, seqlen, weights, biases)
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y))
optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate).minimize(cost)
correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
init = tf.global_variables_initializer()
with tf.Session() as sess:
    sess.run(init)
    step = 1
    while step * batch_size < training_iters:
        batch_x, batch_y, batch_seqlen = trainset.next(batch_size)
        sess.run(optimizer, feed_dict={x: batch_x, y: batch_y, seqlen: batch_seqlen})
        if step % display_step == 0:
            acc = sess.run(accuracy, feed_dict={x: batch_x, y: batch_y, seqlen: batch_seqlen})
            loss = sess.run(cost, feed_dict={x: batch_x, y: batch_y, seqlen: batch_seqlen})
            print("Iter " + str(step*batch_size) + ", Minibatch Loss= " + "{:.6f}".format(loss) + ", Training Accuracy= " + "{:.5f}".format(acc))
        step += 1
    print("Optimization Finished!")
    test_data = testset.data
    test_label = testset.labels
    test_seqlen = testset.seqlen
    print("Testing Accuracy:", sess.run(accuracy, feed_dict={x: test_data, y: test_label, seqlen: test_seqlen}))

结果准确率为97.2%。


  • 3
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值