【HDU 4870】Rating【DP】

本文介绍了一种计算特定竞赛中比赛场次期望值的方法。通过建立状态转移方程,利用概率论解决了一个关于两个账号在比赛中得分变化的问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题意:一个人注册两个账号,初始rating都是0,他每次拿低分的那个号去打比赛,赢了加50分,输了扣100分,胜率为p,他会打到直到一个号有1000分为止,问比赛场次的期望。

题解:由于每次增加分数或者是减少分数都是50的倍数,因而我们可以压缩成每次赢了增加一分,输了减少2分。根据题意我们容易看出,每次分数的变化都是最小的分数进行变化的。

因而我们定义状态ans[i][j]表示从初状态到两个号的分数为i,j的期望。我们可以知道两个号的分数的变化总是[i,i]->[i+1,i]->[i+1,i+1];每次只有一个号的分数在进行变动,这样子就比较容易进行状态的转移。定义dp[i]表示i分数到达i+1分数的期望,则状态转移方程如下:

                                                                          dp[i] = 1×p+(1-p)*(1+dp[i-2]+dp[i-1]+dp[i]);  ans[i+1][i] = ans[i][i]+dp[i], ans[i+1][i+1] = ans[i+1][i]+dp[i];

#include <cstdio>
double ans[21][21], dp[21];
int main() {
    double p;
    int i, j;
    while (~scanf("%lf", &p)) {
        dp[0] = 1/p, dp[1] = 1+(1-p)/p*(dp[0]+1);
        for (i = 2;i <= 19;i++) dp[i] = 1+(1-p)/p*(dp[i-2]+dp[i-1]+1);
        ans[0][0] = 0,ans[1][0] = dp[0],ans[1][1] = ans[1][0]+dp[0];
        for (i = 1;i <= 19;i++) {
            ans[i+1][i] = ans[i][i]+dp[i];
            ans[i+1][i+1] = ans[i+1][i]+dp[i];
        }
        printf("%.6lf\n", ans[20][19]);
    }
}


评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值