android启动的4种模式

原创 2015年07月09日 08:58:04

当应用运行起来后就会开启一条线程,线程中会运行一个任务栈,当Activity实例创建后就会放入任务栈中。Activity启动模式的设置在AndroidManifest.xml文件中,通过配置Activity的属性android:launchMode="设置"。

1. Standared模式(默认)

我们平时直接创建的Activity都是这种模式的Activity,这种模式的Activity的特点是:只要你创建了Activity实例,一旦激活该Activity,则会向任务栈中加入新创建的实例,退出Activity则会在任务栈中销毁该实例。

eg:A1-B1-新的A1-新的B1,一直这样循环,按back返回B-A-B-A

2. SingleTop模式

这种模式会考虑当前要激活的Activity实例在任务栈中是否正处于栈顶,如果处于栈顶则无需重新创建新的实例,会重用已存在的实例,否则会在任务栈中创建新的实例。

eg:A1-B1-原的A1-原的B1,按back返回B-A

3. SingleTask模式

如果任务栈中存在该模式的Activity实例,则把栈中该实例以上的Activity实例全部移除,调用该实例的newInstance()方法重用该Activity,使该实例处於栈顶位置,否则就重新创建一个新的Activity实例。

4. SingleInstance模式

当该模式Activity实例在任务栈中创建后,只要该实例还在任务栈中,即只要激活的是该类型的Activity,都会通过调用实例的newInstance()方法重用该Activity,此时使用的都是同一个Activity实例,它都会处于任务栈的栈顶。此模式一般用于加载较慢的,比较耗性能且不需要每次都重新创建的Activity






版权声明:本文为博主原创文章,转载请著名出处。

相关文章推荐

android_42_activity的4种启动模式

standard:没啥好说的 singleTop:只要是在stack top了,就不再有任何反应了 singleTask:  在stack中,只存在一个实例, 如果不在stack top,那么...

Android Activity 4种启动模式

Android的Activity的四种启动模式。

Android4种活动的启动模式

1.standard 是活动默认的启动模式,在不进行显式指定的情况下,所有活动都会自动使用 这种启动模式。因此,到目前为止我们写过的所有活动都是使用的standard 模式。经过上一 节的学习,你...

Android-Activity生命周期-4种启动模式-数据传递-显式隐式跳转

Android-Activity笔记 一、Activity定义        Activity是一个应用程序组件,提供用户和程序交互的界面。   二、Activity创建与使用      1、继承An...

Android4种活动的启动模式

1.standard 是活动默认的启动模式,在不进行显式指定的情况下,所有活动都会自动使用 这种启动模式。因此,到目前为止我们写过的所有活动都是使用的standard 模式。经过上一 节的学习,你...

Android Activity 4种启动模式的详解

众所周知,在android系统中是通过任务栈来管理我们的Activity的。Task是抽象的概念,指带了一组Activity,它们为实现用户的某个操作目的而聚在了一起,可以来自不同应用。 Andro...

android开发常用的4种设计模式思想

工厂模式:   什么是工厂模式?官方有很多解释,我这里把我所理解的结合经验,诠释给大家,我不想绞尽脑汁,抽象总结出类似于古文(JAVA编程思想)那样难于理解的文字,也没那个水平言简意赅的、一针见血的总...

Android_Activity的4种加载模式

原文链接:http://marshal.easymorse.com/archives/2950 在多Activity开发中,有可能是自己应用之间的Activity跳转,或者夹带其他应用的可复用A...

activity4种启动模式详解

launchMode在多个Activity跳转的过程中扮演着重要的角色,它可以决定是否生成新的Activity实例,是否重用已存在的Activity实例,是否和其他Activity实例公用一个task...

Activity的4种启动模式

在实际开发中,应根据特定的需求为每个Activity指定恰当的启动模式。Activity的启动模式有4种,分别是standard,singleTop,singleTask和singleInstance...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)