算法时间复杂度计算-以前一直不懂,现在好像有点懂了!

算法的时间复杂度
2007年12月02日 星期日 01:17
定义:如果一个问题的规模是n,解这一问题的某一算法所需要的时间为T(n),它是n的某一函数 T(n)称为这一算法的“时间复杂性”。

当输入量n逐渐加大时,时间复杂性的极限情形称为算法的“渐近时间复杂性”。

我们常用大O表示法表示时间复杂性,注意它是某一个算法的时间复杂性。大O表示只是说有上界,由定义如果f(n)=O(n),那显然成立f(n)=O(n^2),它给你一个上界,但并不是上确界,但人们在表示的时候一般都习惯表示前者。

此外,一个问题本身也有它的复杂性,如果某个算法的复杂性到达了这个问题复杂性的下界,那就称这样的算法是最佳算法。

“大O记法”:在这种描述中使用的基本参数是 n,即问题实例的规模,把复杂性或运行时间表达为n的函数。这里的“O”表示量级 (order),比如说“二分检索是 O(logn)的”,也就是说它需要“通过logn量级的步骤去检索一个规模为n的数组”记法 O ( f(n) )表示当 n增大时,运行时间至多将以正比于 f(n)的速度增长。

这种渐进估计对算法的理论分析和大致比较是非常有价值的,但在实践中细节也可能造成差异。例如,一个低附加代价的O(n2)算法在n较小的情况下可能比一个高附加代价的 O(nlogn)算法运行得更快。当然,随着n足够大以后,具有较慢上升函数的算法必然工作得更快。 

O(1)

Temp=i;i=j;j=temp;                     

以上三条单个语句的频度均为1,该程序段的执行时间是一个与问题规模n无关的常数。算法的时间复杂度为常数阶,记作T(n)=O(1)。如果算法的执行时 间不随着问题规模n的增加而增长,即使算法中有上千条语句,其执行时间也不过是一个较大的常数。此类算法的时间复杂度是O(1)。 

O(n^2)

2.1. 交换i和j的内容
     sum=0;                 (一次)
     for(i=1;i<=n;i++)       (n次 )
        for(j=1;j<=n;j++) (n^2次 )
         sum++;       (n^2次 )
解:T(n)=2n^2+n+1 =O(n^2)

2.2.   
    for (i=1;i<n;i++)
    { 
        y=y+1;         ①   
        for (j=0;j<=(2*n);j++)    
           x++;        ②      
    }          
解: 语句1的频度是n-1
          语句2的频度是(n-1)*(2n+1)=2n^2-n-1
          f(n)=2n^2-n-1+(n-1)=2n^2-2
          该程序的时间复杂度T(n)=O(n^2).         

O(n)      
                                                       
2.3. 
    a=0;
    b=1;                      ①
    for (i=1;i<=n;i++) ②
    {  
       s=a+b;    ③
       b=a;     ④  
       a=s;     ⑤
    }
解: 语句1的频度:2,        
           语句2的频度: n,        
          语句3的频度: n-1,        
          语句4的频度:n-1,    
          语句5的频度:n-1,                                  
          T(n)=2+n+3(n-1)=4n-1=O(n).
                                                                                                  
O(log2n )

2.4. 
     i=1;       ①
    while (i<=n)
       i=i*2; ②
解: 语句1的频度是1,  
          设语句2的频度是f(n),   则:2^f(n)<=n;f(n)<=log2n     (这里作者这么写差点没弄明白,备注一下,这是一个数学求值问题,2^f(n)<=n是对②描述,f(n)<=log2n 是根据上一个公式解出来的)
          取最大值f(n)= log2n,
          T(n)=O(log2n )

O(n^3)

2.5. 
    for(i=0;i<n;i++)
    {  
       for(j=0;j<i;j++)  
       {
          for(k=0;k<j;k++)
             x=x+2;  
       }
    }
解:当i=m, j=k的时候,内层循环的次数为k当i=m时, j 可以取 0,1,...,m-1 , 所以这里最内循环共进行了0+1+...+m-1=(m-1)m/2次所以,i从0取到n, 则循环共进行了: 0+(1-1)*1/2+...+(n-1)n/2=n(n+1)(n-1)/6所以时间复杂度为O(n^3).
                                   

我们还应该区分算法的最坏情况的行为和期望行为。如快速排序的最 坏情况运行时间是 O(n^2),但期望时间是 O(nlogn)。通过每次都仔细 地选择基准值,我们有可能把平方情况 (即O(n^2)情况)的概率减小到几乎等于 0。在实际中,精心实现的快速排序一般都能以 (O(nlogn)时间运行。 
下面是一些常用的记法: 


访问数组中的元素是常数时间操作,或说O(1)操作。一个算法如 果能在每个步骤去掉一半数据元素,如二分检索,通常它就取 O(logn)时间。用strcmp比较两个具有n个字符的串需要O(n)时间 。常规的矩阵乘算法是O(n^3),因为算出每个元素都需要将n对 元素相乘并加到一起,所有元素的个数是n^2。 
指数时间算法通常来源于需要求出所有可能结果。例如,n个元 素的集合共有2n个子集,所以要求出所有子集的算法将是O(2n)的 。指数算法一般说来是太复杂了,除非n的值非常小,因为,在 这个问题中增加一个元素就导致运行时间加倍。不幸的是,确实有许多问题 (如著名 的“巡回售货员问题” ),到目前为止找到的算法都是指数的。如果我们真的遇到这种情况, 通常应该用寻找近似最佳结果的算法替代之。

//这是下一篇博文,都是转载的,怕别人的蹦了/

算法时间复杂度的计算2

如何计算程序的时间复杂度呢?

例2:i:= 1;       ①

    while (i<=n)

i:= i*2;     ②

①的频度是1,设②的频度是f(n),则2^f(n)<= n ;f(n)<= log2n,取最大值f(n)= log2n ,

时间复杂度为O(log2n)

法则1——嵌套循环语句

从里向外分析这些循环。一组嵌套循环内部的一条语句总的运行时间为该语句的运行时间乘以该组所有的循环的大小的乘积

例3:for i:= 0 to n do

for j:= 0 to n-1 do

begin

a[i]:= a[j]+i+j;

end;

时间复杂度为Ο(n^2)

法则2——分支语句

一个分支结构语句的运行时间从不超过条件判断所用时间加上个分支语句中运行时间长者的和。

例4:if condition

        S1

      else

        S2

时间复杂度为条件判断所用时间加上S1和S2中运行时间较长者的总运行时间

法则3——循环语句

    一次循环的运行时间至多是该循环语句的运行时间乘以循环的次数。

法则4——顺序语句

将各个语句的运行时间求和即可(这意味着,其中的最大值就是所得的运行时间)。如例1。

显然,在某些情况下这么估计有些过高,但绝对不会估计过低。实际上如果没有特殊说明,算法的时间复杂度一般是指最坏情况下的复杂度。

除了以上法则外还有其他的方法,算法时间复杂度的分析策略都是从内部(最深层部分)向外展开,如果有过程或函数调用,那么这些调用要首先分析,如果程序中有递归,那就要具体情况具体分析了。

情况一:

例5:function factorial(n:integr):longint;

begin

      if n<= 1 then factorial:= 1

      else factorial:= n*factorial(n-1) ;

end;

这个求N!的函数的时间复杂是O(n!)

情况二:

例6:function factorial(n:integr):longint;

begin

      if n<= 1 then factorial:= 1

      else factorial:= factorial(n-1)+factorial(n-2) ;

end;

递归算法在大多数时候将其转换成一个简单的循环结构式是相当困难的,这时就要具体问题具体分析。这个斐波那契数函数算法的时间复杂度高得吓人,为O(2^n)

我们还应该区分算法的最坏情况的行为和期望行为。如快速排序的最坏情况运行时间是O(n^2),但期望时间是O(nlogn)。通过每次都仔细地选择基准值,我们有可能把平方情况 (即O(n^2)情况)的概率减小到几乎等于0。在实际中,精心实现的快速排序一般都能以 (O(nlogn)时间运行。

下面是一些常用的记法:

访问数组中的元素是常数时间操作,或说O(1)操作。一个算法如果能在每个步骤去掉一半数据元素,如二分检索,通常它就取O(log2n)时间。用strcmp比较两个具有n个字符的串需要O(n)时间 。常规的矩阵乘算法是O(n^3),因为算出每个元素都需要将n对 元素相乘并加到一起,所有元素的个数是n^2。

指数时间算法通常来源于需要求出所有可能结果。例如,n个元素的集合共有2^n个子集,所以要求出所有子集的算法将是O(2^n)的 。指数算法一般说来是太复杂了,除非n的值非常小,因为,在这个问题中增加一个元素就导致运行时间加倍。不幸的是,确实有许多问题 (如著名 的“巡回售货员问题” ),到目前为止找到的算法都是指数的。如果我们真的遇到这种情况, 通常应该用寻找近似最佳结果的算法替代之。

通过学习以上各种方法以后,我们估计算法的时间复杂度就不是很困难了。而在竞赛时是要求1秒钟出结果,那具体什么样的数据规模可以在1秒内出答案呢?一般来说,10^6的数据规模都可以稳过。也就是说,当n=1000时,一般就要用O(n^2)的算法;当n=100时,一般是用O(n^3)的算法;当n=10^4或10^5时,一般是用O(nlog2n)的算法;当n是一个很小的数据的时候,可以考虑n!或2^n;而10^7~10^9就要看程序的常数了,常数小可以过,常数大就不一定能过了,视情况而定。


  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值