图的搜索算法之广度优先搜索

原创 2015年07月10日 16:32:03
               图的邻接表表示

对图(有向或无向)G=<V,E>便V=1,2,,n,其邻接表表示是一个由|V|个链表组成数组,对每个uV,链表Adj[u]称为对应顶点u的邻接表。它包含G中所有与u相邻的顶点。每个邻接表中顶点通常是按任意顺序存放的。
这里写图片描述
无向图的邻接表表示
这里写图片描述
有向图的邻接表表示

广度优先搜索(Broad First Search)

1.问题的理解与描述
给定一个图(有向或无向)G=<V,E>和其中的一个源顶点s,广度优先搜索系统地探索G的边以“发现”从s出发每一个可达的顶点:发现从s出发距离为k+1的顶点之前先发现距离为k的顶点。搜索所经路径中的顶点,按先后顺序构成“父子关系”:先发现的顶点u,并由u出发发现与其相邻的顶点v,则称u为v的父亲。由于每个顶点只有最多一个顶点作为它的父亲,所以搜索路径必构成一棵根树(树根为起始顶点s)Gπ。我们把这棵树称为G的广度优先树。与此同时,我们还计算出了从s到这些可达顶点的距离(最少的边数即“最短路径”)。这样,图的广度搜索问题形式化表述如下。
输入:图G=<V,E>,源顶点s∈V。
输出:G的广度优先树Gπ以及树中从树根s(源顶点)到各节点的距离。
2 算法的伪代码描述
为了跟踪整个过程,广度优先搜索为每个顶点着白色,灰色或黑色。开始时,所有的顶点都着白色,然后可能白城灰色后再为黑色。一个顶点在探索过程中首次被遇到称为发现,此后他就不再是白色了。所以灰色的或黑色的是已 发现的,广度优先搜索用两者的区别来保证搜索进程以广度优先的方式进行,若(u,v)∈E且顶点u是黑色的,则顶点v非灰即黑,即与黑色顶点相邻的顶点必是已访问过的。灰色顶点可能有白色相邻顶点,他们表示已访问过或未访问过的界限。
过程BFS假定输入的图G是用邻接表表示的,每个顶点u∈V的颜色存储在color[u]中,为计算图G的广度优先树Gπ 和从s到各可达顶点的距离,用π[u]表示顶点u在Gπ 中的父节点,用d[u]表示从s到u的距离。算法使用一个先进先出的队列Q来管理灰色顶点集合。
伪代码如下:

BFS(G,s)
1  for 每个顶点 uV[G] - {s}
2       do color[u]←WHITE
3          d[u]←
4       [u] ←NIL
5  color[s] ←GRAY
6  d[s]←0
7  Q←Ø
8  ENQUEUE(Q,s)
9  while Q≠Ø
10     do u←DEQUEUE(Q)
11         for each v Adj[u]
12             do if color[v] = WHITE
13                   then color[v]←GRAY
14                     [v] ←u
15                            d[v]←d[u] + 1
16                            ENQUEUE(Q,v)
17          color[u]←BLACK
18 return  and d

如下图是BFS对一个无向图的操作过程:

这里写图片描述

算法的运行时间:Θ(V + E)

3 算法的c++实现

/***********************************
*@file:graph.h
*@ brif:图的邻接表的算法实现类
*@ author:sf
*@data:20150704
*@version 1.0
*
************************************/
#ifndef _GRAPH_H
#define _GRAPH_H


#include <list>
using namespace std;
struct vertex//邻接表节点结构
{
    double weight;//边的权值
    int index;//邻接顶点
};
class Graph
{
public:
    list<vertex> *adj;//邻接表数组
    int n;//顶点个数
    Graph(float *a,int n);
    ~Graph();

};

#endif // _GRAPH_H
#include "stdafx.h"
#include "Graph.h"

Graph::Graph(float *a,int n):n(n)//a是图的邻接矩阵
{
    adj = new list<vertex>[n];
    for (int i = 0; i < n;i++)//对每个顶点i
        for (int j = 0; j < n;j++)
            if (a[i*n+j]!=0.0)
            {
                vertex node = { a[i*n + j], j };//a[i,j]=weight 边的权重 j,邻接节点号
                adj[i].push_back(node);
            }
}
Graph::~Graph()
{
    delete[] adj;
    adj = NULL;
}
#ifndef _BFS_H
#define _BFS_H
/***********************************
*@file:BFS.h
*@ brif:图的邻接表的图的广度优先搜索(Broad First Search, BFS)算法实现
*@ author:sf
*@data:20150704
*@version 1.0
*
************************************/
#include "Graph.h"
#include "vector"
#include <utility>
using namespace std;
/***********************************
*@function:bfs
*@ brif:图的邻接表的图的广度优先搜索(Broad First Search, BFS)算法实现
*@ input param: g 图的邻接表 s 源顶点
*@ output param: pi g的广度优先树 d 从根节点到各顶点的距离
*@ author:sf
*@data:20150707
*@version 1.0
*
************************************/
pair<vector<int>, vector<int>> bfs(const Graph &g, int s);
/***********************************
*@function: printPath
*@ brif:打印广度优先树
*@ input param: pi 图的广度优先树 s 源顶点 v 叶子v
*@ author:sf
*@data:20150707
*@version 1.0
*
************************************/
void printPath(const vector<int> &pi, int s, int v);
#endif
/***********************************
*@file:BFS.cpp
*@ brif:图的邻接表的图的广度优先搜索(Broad First Search, BFS)算法实现
*@ author:sf
*@data:20150704
*@version 1.0
*
************************************/
#include "stdafx.h"
#include "BFS.h"
#include <queue>
#include <iostream>
using namespace std;
enum vertex_color{WHITE,GRAY,BLACK};
typedef enum vertex_color Color;
pair<vector<int>, vector<int>> bfs(const Graph &g, int s)
{
    queue<int> Q;//优先队列管理灰色顶点集合
    vector<int> pi(g.n, -1);//顶点u在g中的父节点
    vector<int> d(g.n, INT_MAX);//s到u的距离
    vector<Color> color(g.n, WHITE);//每个顶点的颜色存储在color中
    int u, v;//父节点,子节点
    d[s] = 0;
    color[s] = GRAY;
    Q.push(s);
    while (!Q.empty())
    {
        u = Q.front();
        Q.pop();
        list<vertex> q = g.adj[u];
        auto pq = q.begin();
        while (pq!=q.end())
        {
            v = pq->index;
            if (color[v] == WHITE)
            {
                color[v] = GRAY;
                d[v] = d[u] + 1;
                pi[v] = u;
                Q.push(v);
            }
            pq++;
        }
        color[u] = BLACK;
    }
    return make_pair(pi, d);
}
void printPath(const vector<int> &pi, int s, int v)
{
    if (v == s)
    {
        cout << s;
        return;
    }
    if (pi[v] == -1)
        cout << "no path from" << s << "to" << v << endl;
    else
    {
        printPath(pi, s, pi[v]);
        cout << v;
    }
}
// bfs_test.cpp : 定义控制台应用程序的入口点。
//

#include "stdafx.h"
#include "BFS.h"
#include <iostream>
using namespace std;
int _tmain(int argc, _TCHAR* argv[])
{

    int s = 1, n = 8;
    pair<vector<int>, vector<int>> r;
    float a[] =
    {
        0, 1, 0, 0, 1, 0, 0, 0,
        1, 0, 0, 0, 0, 1, 0, 0,
        0, 0, 0, 1, 0, 1, 1, 0,
        0, 0, 1, 0, 0, 0, 1, 1,
        1, 0, 0, 0, 0, 0, 0, 0,
        0, 1, 1, 0, 0, 0, 1, 0,
        0, 0, 1, 1, 0, 1, 0, 1,
        0, 0, 0, 1, 0, 0, 1, 0
    };
    Graph g(a, 8);
    r = bfs(g, 1);
    vector<int> pi = r.first;
    vector<int> d = r.second;
    for (int i = 0; i < n; ++i)
    {
        if (i != s)
        {
            printPath(pi, s, i);
            cout << "length=" << d[i] << endl;
        }
    }
    system("pause");
    return (EXIT_SUCCESS);
}

运行结果:
这里写图片描述

【算法入门】广度/宽度优先搜索(BFS)

广度/宽度优先搜索(BFS) 【算法入门】 郭志伟@SYSU:raphealguo(at)qq.com 2012/04/27 1.前言 广度优先搜索(也称宽度优先搜索,缩写BFS,以下采用广...

【算法小总结】广度优先搜索剖析

广度优先搜索 以前一直用搜索用的都是深搜,因为听说有很多题能用广搜就能用深搜什么的。今天老老实实的去看广搜了,结果发现我之前想的太天真的,DFS和BFS不仅在性质上不同,而且对于某些题和某些情况,用...

BFS广度优先搜索——入门

BFS——广度优先搜索 广度优先搜索是通过对图的完全遍历来达到要求的点的算法。其对图的遍历是如同波浪一样,每层按照制定的方式一层一层向下搜。 如: 5 5 4 2 ...
  • ilblue
  • ilblue
  • 2016年10月26日 21:03
  • 1472

广度优先搜索的实现

图的遍历是指从图中的某一个顶点出发,按照某种搜索方法沿着图中的边对图中的所有顶点访问一次且仅访问一次。注意到树是一种特殊的图,所以树的遍历实际上也可以看作是一种特殊的图的遍历。图的遍历主要有两种算法:...

深度优先搜索与广度优先搜索

有两种常用的方法可用来搜索图:即深度优先搜索和广度优先搜索。它们最终都会到达所有连通的顶点。深度优先搜索通过栈来实现,而广度优先搜索通过队列来实现。  深度优先搜索:下面图中的数字显示了深度优先搜索顶...

数据结构:图的遍历--深度优先、广度优先

图的遍历是指从图中的某一顶点出发,按照一定的策略访问图中的每一个顶点。当然,每个顶点有且只能被访问一次。 在图的遍历中,深度优先和广度优先是最常使用的两种遍历方式。这两种遍历方式对无向图和有向图都是适...

BFS 广度优先搜索 解析

1.概念:        广度优先搜索算法(Breadth-First-Search),又译作宽度优先搜索,或横向优先搜索,简称BFS,是一种图形搜索算法。简单的说,BFS是从根节点开始,沿着树的宽...
  • wr132
  • wr132
  • 2015年01月29日 18:09
  • 1255

广度优先搜索(BFS)算法

广度优先搜索(BFS)算法宽度优先搜索算法(又称广度优先搜索)是最简便的图的搜索算法之一,这一算法也是很多重要的图的算法的原型。Dijkstra单源最短路径算法和Prim最小生成树算法都采用了和宽度优...

广度优先搜索算法(BFS)

使用计算机求解的问题中,有许多问题是无法用数学公式进行计算推导采用模拟方法来找出答案的。这样的问题往往需要我们根据问题所给定的一些条件,在问题的所有可能解中用某种方式找出问题的解来,这就是所谓的搜索法...

【经典算法】图的深度优先搜索和广度优先搜索

前面学习了图的邻接表存储,
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:图的搜索算法之广度优先搜索
举报原因:
原因补充:

(最多只允许输入30个字)