关闭

第三讲 关系映射反演原则

标签: 数学方法论关系映射反演
550人阅读 评论(0) 收藏 举报
分类:

关系映射反演原则,是指一种分析处理问题的普遍方法或准则。它是属于一般科学方法论性质范畴的一种工作原则。因为这种普遍方法或工作原则包括着对所要研究的问题中的关系结构,采取映射和反演两个步骤去解决问题,所以给它的命名也就不免有点冗长了。这里所说的映射和反演可以赋予很广泛的含义。

有时这么教条的定义,感觉很虚的啊,这离我们似乎十万八千里。我想说的是:非也,非也。

其实在日常生活中,我们经常自觉或不自觉地在运用着关系映射反演原则。比如,一个人对着镜子剃胡子,镜子里照出他脸颊上胡子的映象,从胡子到映象的关系就叫作映射。所以,映射就是连系着原象和映象的一种对应关系。他用剃刀修剪胡子时,作为原象的胡子和剃刀两者的关系可以叫作原象关系。这种原象的胡子和剃刀两者的关系可以叫作原象关系。这种原象关系在镜子里表现为映象关系。他从镜子里看到这种映象关系后,便能调整剃刀的映象与胡子的映象的关系,于是,他也就真正修剪了胡子。这里显然用到了反演原则,因为他已经根据镜子里的映象能对应地反演到原象的这一原理,使剃刀准确地修剪了真实的胡子(原象)。

现在是不是不感到那么遥不可及了,很接地气啊。原来这么高深的原则我们每个人早就熟能生巧了。是不是更有兴趣去了解了啊!

下面为了简单化,不妨把关系(relationship)映射(mapping)反演(inversion)原则简称为RMI原则。那么令R表示一组原象的关系结构(或原象系统),其中包含着待确定的原象x。令M表示一种映射(一一对应法则),通过它的作用假定原象结构系统R被映成映象关系结构R*,其中自然包含着未知原象的映象x*。如果有办法把x*确定下来,则通过反演即逆映射I=M-1也就相应地把x确定下来。这便是工作原则的基本内容。 框图表示如下:
这里写图片描述

具体地,就拿概念来解释一下。概念是人脑活动的最高产物,它是事物对象或事物关系在人脑中的反映。我们不妨把概念的形成过程看成是通过人脑机制活动完成的映射。于是概念便是事物原象(对象及关系)的映象。利用概念思维(包括逻辑分析推理)得出的结论,返回到事物原型上去解决问题,这可以理解为一种反演过程。这样看来,一般情况下通过人脑概念思维去解决实际问题的全过程,在一定条件下也可以看作是RMI原则的应用。

现在感觉是不是简单很多啊。可是事实并非如此,长征的道路是曲折的。

通过概念思维(概念逻辑演绎思维)去解决某些实际问题的过程,有时要比上述情况复杂困难很多。例如,包含着实际问题x的某个事物系统R可能不是一个静态的关系结构,而是一个发展着的需要继续补充条件的动态关系结构,而且只有增补某些条件后才能把x的结论确定下来。这时,R可以看成是处于初始状态的关系结构,R* 是这种结构的映象,但R* 尚不足以确定x的映象x* 。为了确定x* 需要假定在R* 上补充一组条件C* 。相应地,也就需要在R上追补一组条件C。这样,用以解决某个实际问题的RMI原则的运用过程就可用如下的框图来表示。
这里写图片描述

现在把RMI原则基本讲清楚了,可是似乎都是停留在语言上。而数学是一门精确的科学,所以只要一进入数学领域,不管是任何方法或原则均可获得比较确切的表述形式。下面先用描述方式给出一系列常用名词的解释。

数学对象:凡可表述为数学概念的事物(对象)个体称之为数学对象。例如,数、量、数列、向量、变数、函数、方程、泛函、函数族、点、线、面、几何图形、概率、分布、导数、数学模型等等。
一般来说,数学对象必须具有三个特点,一是意义确定性,二是逻辑演绎性,三是特殊情况下的客观背景存在性。所以,凭空虚构的概念不能成为数学对象。

关系结构:由一些数学对象构成的集合称之为无关系结构。如果在集合的元素(对象)间存在着某种或某些数学关系则称为关系结构(所谓数学关系是指在数学对象间可以确切定义的关系。例如代数关系、序关系、拓扑关系等等)。
一般来说,数学关系结构具有下列三个条件:一是结构系统中的对象必须是数学对象,二是对象间的联系必须是数学关系,三是结构系统具有某种整体性或可分解性。

映射(或变换):凡是在两类数学对象或两个数学集合的元素之间建立了一种“对应关系”,就定义了一个映射。特别地,如果是一一对应关系,则称为可逆映射。例如,代数中的线性变换,几何中的射影变换,分析学中的变数代换、函数变换、数列变换、积分变换,以及拓扑学中的拓扑变换等都是映射概念的熟知例子。

假设φ 是一个映射,它把集合S=α 中的元素映入(或映满)另一集合S=α,其中α表示α的映象,α称为原象,这时可记作

φ:SS,φ(α)=α
如果S还是一个关系结构,φ能将S映满S,则可记S=φ(S),并称S为映象关系结构。

特别地,假如关系结构S中包含一个未知性状的对象x,它是我们问题中需要确定其性状的目标,则称x目标原象,在映射α作用下,x=φ(x)便称为目标映象

给定一个含有目标原象x的关系结构系统S。如果能找到一个可定映映射φ,将S映入或映满S,则可从S通过一定的数学方法把目标映象x=φ(x)确定出来,从而通过反演即逆映射φ1便可把x=φ1确定出来。

全过程包括的步骤为:关系-映射-定映-反演-得解

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:112478次
    • 积分:3435
    • 等级:
    • 排名:第9704名
    • 原创:12篇
    • 转载:0篇
    • 译文:226篇
    • 评论:69条
    最新评论