漫步线性代数二——线性方程的几何形状

几何形状

理解这个主题的方法是举例说明。我们以两个极其简单的方程开始,可以说大家在没有学习线性代数课程的情况下都能解决。不过我希望可以给高斯一个机会:

2xyx+y=1=5
我们可以按行或按列看待这个方程组。我希望大家两方面都能明白。

第一种方法主要看每个方程(行)。这是大家最熟悉的,对于两维的情况我们可以很快理解。方程 2xy=1 表示 xy 平面上的一条直线。该直线经过点 x=1,y=1 x=12,y=0 (也通过(2,3)和所有的中间点)。第二个方程 x+y=5 得到另一条线(图1a)。它的斜率是 dy/dx=1 并且它与第一条线相交。

交点位于两条线上。它是这两个方程的唯一解。通过“消去法”可以快速的求出点 x=2,y=3

第二种方法是将线性系统看成列。两个独立方程实际是一个向量方程:

Column formx[21]+y[11]=[15]
问题是找到组合左边列向量的组合,它产生了右边的向量。这些向量 (2,1),(1,1) 由图1b中的粗线表示。未知量是与列向量相乘的 x,y 。整个想法可以从图中看出来,2倍的第一个列向量加上3倍的第二个列向量得到右边的结果。几何上这产生了著名的平行四边形。代数上这产生了方程右边正确的向量 (1,5) 。列图片证实了 x=2,y=3

对这个例子再花点时间,我会前进一步,令 n=3 。三个方程仍然是可控的并且他们有更多的变形:

Three planes2u4u2u++v6v7v++w2w===529(1)
我们再次研究行或列,首先从行开始。每个方程描述了一个三维上的一个平面。第一个平面是 2u+v+w=5 ,如图2所示。它包含点 (52,0,0),(0,5,0),(0,0,5) 。它由任何三个点(只要他们不位于一条直线上)确定。


这里写图片描述
图1:行图像(两条线)和列图像(组合列)

将5变成10,平面 2u+v+w=10 将和一个平面平行。它包含点 (10,0,0),(0,10,0),(0,0,10) ,离原点 u=0,v=0,w=0 有两倍远。改变右边的数值将使平面产生移动,但依然与自己平行,平面 2u+v+w=0 通过原点。

这里写图片描述
图2:行图像:三个线性方程表示的三个相交平面

第二个平面是 4u6v=2 。因为 w 可以取任意值,所以它是垂直的。w的系数为零,但它仍然是3维空间中的一个平面。(方程 4u=3 或者更极端的 u=0 ,仍然描述的是一个平面。)图中展示了前两个平面相交。交于一条直线。在三维空间里,一条直线需要两个方程来确定;在 n 维空间里,它需要n1个方程。

最后,第三个平面与这条直线交于一点。第三个方程 2u+7v+2w=9 表示一个平面(未绘制),它通过点 u=1,v=1,w=2 。三个都相交的点 (1,1,2) 就是线性方程的解。

这个行图像如何扩展到 n 维呢?n个方程包含 n 个未知数。第一个方程仍然决定一个“平面”。不过它不再是三维空间里的二维平面;某种程度上来说,它是的维度是n1。在 n 为空间里它必须是平的,并且非常薄。

如果时间是第四个维度,那么平面t=0削减了四维空间,产生了我们生活的三维宇宙(或相反,宇宙就是四维空间中 t=0 )。另一个平面是 z=0 ,这也是三维的;它就是普通的 xy 平面,此时该平面覆盖了所有时间。这些三维平面也会相交!他们共享 t=0 处的 xy 平面。我们现在降到两个维度,下一个平面留下了一条直线。最后,第四个平面留下了一个点。它是四维空间中四个平面的交点,它就是4个线性方程组的解。

如果这个来自相对论的例子在往前走一步,我就会陷入麻烦。针对这一点,线性代数可以解决任意数量的方程。第一个方程产生 n 为空间中n1维的平面,第二个平面与它相交(我们希望如此)得到维数是 n2 的更小集合。假如一切顺利,每个新平面(每个新方程)都减少一维度。到最后,当所有的 n 为平面都考虑进来后,交点的维数是零。它是一个点,位于所有平面上,并且其坐标满足所有的n个方程。它就是问题的解!

列向量与线性组合

我们转向列。这一次向量方程(与(1)的方程相等)是

Column formu242+v167+w102=529=b(2)
这些都是三维列向量。向量 b 由坐标是5,2,9的点确定。三维空间中的每个点都匹配一个向量,反之亦然。这是笛卡儿的思想,通过使用点的坐标它将几何变成代数。我们可以用列表示向量,或者我们可以列出它的成分如 b=(5,2,9) ,或者我们可以用几何方式表示它,就是顶点在原点的箭头。你可以选择箭头,或点或三个数字。在六个维度,最简单的莫过于选择6个数。

当成分水平列出时,我们使用括号和逗号;当垂直书写时,用方括号(不带逗号)。真正重要的是向量加法和标量(一个数)乘法。在图2a中是向量加法,各部分分别相加:

Vector addition500+020+009=529
图像右边是乘以2(如果是-2,那么反转一下方向):
Multiplication by scalars2102=204,2102=204
此外右侧的图是线性代数核心思想之一。它使用了两个基本操作;向量先是和数相乘,然后相加。这叫做线性组合,并且这种结合解决了我们的方程:
Linear combination1242+1167+2102=529
方程(2)要求乘数 u,v,w 产生右侧的 b 。这些数是u=1,v=1,w=2。他们给出列的正确组合。在行图像(三个平面相交的)中也给出了点 (1,1,2)


这里写图片描述
图3:列图像:列的线性组合等于 b

我们真正的目标是超越两个或三个维度,看到n维。对于 n 个未知量的n个方程,在行图像中有 n 个平面。在列图像中有n个向量,再加上右边的向量 b 。方程需要n列的线性组合等于 b 。当然对于某些方程可能不存在。比较矛盾的是,理解好案例的方式就是研究坏案例。因此当它不满足,也就是奇异的情形下,我们试着看看它的几何形状。

奇异情况

假设现在是三维空间,行图像中的三个平面不相交。那么将会有什么问题?一种可能是,两个平面平行。方程2u+v+w=5,4u+2v+2w=11不一致,平行的平面将无解(图4a所示)。在两维空间里,平行线是唯一的可能性。但在三维空间里,三个平面不想交的话会比较麻烦。


这里写图片描述
图4:奇异情况:(a)(b)(d)无解,(c)有无限个解

最常见的困难如图4b所示。平面构成了一个三角形。每一对平面都相交于一条直线,并且这些线都是平行的。第三个平面与其他平面不平行,但它与平行于他们的交线。这对应于一个奇异情况 b=(2,5,6)
No solution,as in Figure 4bu2u3u++vv+++w3w4w===256(3)
前两个方程左边相加得到第三个的左边,但右边 2+56 。方程1加方程2减去方程3得到不可能命题 0=1 。因此方程组自相矛盾,高斯消元法将会系统地发现这个问题。

另一个与这个有关的奇异系统是有无限解。当最后那个方程的6换成7,三个方程结合起来得到 0=0 。现在第三个方程是前两个的和。这种情况下三个平面有一条共同直线(图4c)。改变右边的值将平行地移动图4b的平面,当 b=(2,5,7) 时,图像突然变得不同。最下面那条直线与另两条相交,这条线就是问题的解。图4c仍是奇异,但现在它是有太多的解,而不是太少。

极端的例子是三个平行平面。右边大部分情况下都没有解(图4d)。对于特殊的情况(像b=(0,0,0))整个平面都是解,因为三个平行平面移动成同一个平面。

当系统是奇异的时候,列图像会发生什么?方程左边仍有三列,并且我们试图组合他们得到 b

u123+v101+w134=b(4)
b=(2,5,7) 时,可能; b=(2,5,6) ,不可能。原因是这三列位于一个平面上。然后每个组合也都在这个平面上(过原点)。如果向量 b 不在平面上,那么没有解(图5)。这是迄今为止最有可能的情况;奇异系统一般都没有解。但是有一个机会,就是b位于列组成的平面上。在这种情况下,有许多的解;三列可以有无限中组合得到 b 。图5b中的列图像对应于在图4c中的行图像。


这里写图片描述
图5:奇异情况:b位于三列确定的平面外或平面内


我们怎么知道三列位于同一平面内?答案之一是找出列的组合,使得他们相加等于零。经过一些计算,得到 u=3,v=1,w=2 。三倍的第一列等于第二列加上两倍的第三列。第一列在第二列和第三列组成的平面内。只有两列是独立的。

向量 b=(2,5,7) 位于列1加列3构成的平面上,所以 (1,0,1) 是一种解。我们可以添加组合 (3,1,2) 给出了 b=0 。所以解是一整条直线,正如我们从行图像中看到的。

事实是,我们知道列组合得到零,因为行就是这样。这是一个数学事实,不是计算得到的,而且 n 维情况依然正确。如果n个平面没有交点,或有无限多个交点,那么 n <script type="math/tex" id="MathJax-Element-759">n</script>列位于同一个平面上。

如果行图像不成立,那么列图像同样如此。接下来几篇文章先讨论最重要问题-非奇异的情况,即有一个解。再然后研究一般情况,也许有很多解或根本没有。对于这两种情况,我们不需要矩阵符号和消除算法才能继续。

  • 11
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值