漫步微积分三十——定积分的性质

翻译 2016年08月28日 21:04:43

代数和几何面积

在前面的章节我们考虑了曲线y=f(x)下方和x=a,xb之间围成区域的面积,还有两个假设分别是(1)f(x)0;(2)a<b。然而通过逼近和的极限来定义定积分的公式即

baf(x)dx=limmax Δxkk=1nf(xk)Δxk(1)

不依赖于这两个假设。

例如,假设曲线位于x轴下方,如图1左边所示。在这种情况下,我们会质疑说曲线下边的区域,但我们肯定可以用曲线,x轴在x=a,x=b围成的区域来描述他。(1)中的每一项显然是负的因为f(xk)<0。因此,f(xk)<0Δxk是阴影矩形面积负值,该区域面积的积分是负值,因此

area of the region=baf(x)dx

同样,如果曲线部分在x轴上部,部分在下部,如图1右所示,那么积分(1)可以看做正项和负项的和,对应与x轴上面和下面的部分:

baf(x)dx=A1A2+A3A4(2)

其中面积A1,A2,A3,A4都是正的。积分(2)经常称作区域的代数面积,因为在计算面积是,位于x轴上方的取正,位于下方的取负。如果每部分都取正数的话,得到的是几何面积:

A1+A2+A3+A4=cadc+edbe(3)

为了求出几何面积,我们必须画出图像,得到交点然后分别计算(3)右边的每个积分,这样的话就能得到正确的符号组合。


这里写图片描述
图1

其他性质

如果我们去掉条件a<b而用相反的假定a>b,我们仍然可以保留定积分的纯数字定义(l)。因为我们从ab遍历区间,所以增量Δxk为负,这是唯一的变化。由此得到方程

baf(x)dx=abf(x)dx(4)

对于所有的a,b(ab)都是成立的。另外,因为(4)表明交换积分的上下限会改变积分的符号,所以很自然得出

aaf(x)dx=0(5)

如果a<bca,b间的任何一个数,根据(1)很容易得到

baf(x)dx=caf(x)dx+bcf(x)dx(6)

性质(4)(5)告诉我们(6)对任意的三个数a,b,c都成立,不管他们互相之间是否存在关系。

根据定义(1),我们进一步列出了一些定积分的性质:

bacf(x)dxba[f(x)+g(x)]dxif f(x)g(x) on [a,b],=cbaf(x)dx=baf(x)dx+bag(x)dxthenbaf(x)dxbag(x)dx(7)(8)(9)

换句话说,性质(7)表示常数因子可以移到积分符号外边,(8)表示和的积分等于单个积分的和。

变积分限

在书写定积分时,我们将x作为积分变量

baf(x)dx(10)

然而,(10)是一个固定的数,其值并不取决于用哪个字母来表示变量。除了(10),我们同样可以写为

baf(t)dtbaf(u)du

或任何类似的表达式,其意义都是一样的。用这种方式表示的字母通常被称为虚拟变量。

在大多数情况下,使用什么字母都无所谓,只要想法理解清楚就行。然而,有时我们想要通过积分给定的函数f(x)来构建一个新函数F(x),积分下限为a,上限是一个变量,如下所示

F(x)=xaf(x)dx(11)

很明显这种用法可能会造成混淆,因为右边的字母x有两种不同的含义:积分上限,虚拟变量。为此,习惯上,我们将(11)写成以下形式

F(x)=xaf(t)dt(12)

t作为虚拟变量代替x

(12)定义的函数F(x)具有两个重要的性质。首先,只要被积函数是在a,x区间上是连续的,那么积分肯定存在。第二,此函数的导数是被积函数上限的值:

ddxF(x)=ddxxaf(t)dt=f(x)(13)

对于任何给定的连续函数f(x),为了找出不定积分,它提供了令人满意的理论解。作为一个实际的问题,可能很难(甚至是不可能)用任何熟悉的函数来计算

f(x)dx=F(x)

但是,即使我们找不到F(x)的公式,至少我们知道,原则上连续函数的不定积分总是存在的,即(12)定义的函数。

例1:找出下面不定积分问题的一个显式公式

dxx10+13=F(x)

现在我们无法解决,并且将永远无法解决。然而,如果我们不需要一个显式公式,而只是一个定义良好的函数,那么

F(x)=x0dtt10+13

就满足条件。

例2:让我们试着计算

ddx(x0dt1+t2)

目前这个阶段,我们无法找出一个可导的函数来表示括号内的积分。但这并不重要。根据(13),我们立即得到

ddx(x0dt1+t2)=11+x2

因此在求导可以解决的时候下,没必要一定先求积分。

相关文章推荐

高等数学:第五章 定积分(1)概念与性质 中值定理 微积分基本公式

§5.1  定积分的概念 一、从阿基米德的穷竭法谈起 【引例】从曲线与直线,, 所围图形的面积。  如图:在区间  上插入  个等分点 ,得曲线上点 ,过这些点分别向轴,轴引垂线,得到阶梯形...

漫步微积分二十七——曲线下的面积 定积分 黎曼

我们继续讨论我们要解决的问题。y=f(x)y=f(x)是定义在闭区间a≤x≤ba\leq x\leq b上的非负函数,如图1所示。我们如何计算阴影部分(即图像下方,xx轴上方以及垂直直线x=a,x=b...

漫步微积分三十一——定积分的直观含义

前面的文章中,我们完成了两个主要目的。首先,我们将面积近似为给定曲线下的面积,并利用他们和的极限求出确切的面积值。第二,通过使用更强大的方法微积分基本定理,我们学会了如何计算极限的数值解。几乎前几篇文...

【数模学习】Matlab 符号微积分 计算微分、雅可比矩阵、不定积分与定积分、求解微分方程

1.计算微分      函数diff可以用来计算符号表达式的微分,其调用格式如下:      df=diff(f,n);      参数说明:df是微分运算的结果。f是输入的表达式,n是求导的次数,其...
  • wyh7280
  • wyh7280
  • 2015年07月02日 21:58
  • 938

微积分,定积分,导数的相关理解

(个人) 因为,在现实世界中,人们发现,在现实世界中,一个事件/情 ,并不是孤立存在的,它与其他的一个或多个事件,都有着非常紧密的联系,存在着某种函数关系,而借助于这种函数关系,那么,我们就可以通过...
  • H002399
  • H002399
  • 2015年05月04日 07:55
  • 533

漫步微积分二十——微分和切线逼近

前面的文章主要关注切线问题,即给定一条曲线,找出它切线的斜率;或者等价地,给定一个函数,求它的导数。除了全面研究导数外,牛顿和莱布尼兹还发现,几何和物理中许多问题需要求导的逆过程。有时叫做切线问题的逆...

漫步微积分三十四——体积计算:圆柱壳法

还有一种去体积的方法,往往它比上篇文章的方法更加方便。为了理解这种方法,考虑图1左边所示的区域,也就是,第一象限数轴和所示示曲线y=f(x)y=f(x)围成的区域。如果这个区域绕xx轴旋转,那么图中的...

漫步微积分十七——最大最小值问题(续)

我们用其他的例子继续讨论上一篇文章的基本方法。例1:圆柱形汤罐头的制造商接了一笔大订单,订单要求罐头的体积为V0V_0。哪种尺寸可以最小化罐头的表面积,也就是所需的金属最少?解:r,hr,h分别表示圆...

漫步微积分二十八——极限思想下的面积计算

上篇文章中讨论的概念给出了计算面积的实际过程。现在我们利用一些实例来测试这个过程是如何工作的。例1:考虑区间[0,b][0,b]上的函数y=f(x)=xy=f(x)=x。图像(图1)下面的区域是高和底...

漫步微积分三十二——两条曲线间的面积

假设我们给出了两条曲线y=f(x),yg(x)y=f(x),yg(x),如图1所示,在x=a,bx=a,b处有交点并且在区间[a,b][a,b]内第一条曲线位于第二条的上方,为了求出曲线之间的面积,很...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:漫步微积分三十——定积分的性质
举报原因:
原因补充:

(最多只允许输入30个字)