漫步微积分三十一——定积分的直观含义

翻译 2016年08月29日 19:11:55

前面的文章中,我们完成了两个主要目的。首先,我们将面积近似为给定曲线下的面积,并利用他们和的极限求出确切的面积值。第二,通过使用更强大的方法微积分基本定理,我们学会了如何计算极限的数值解。几乎前几篇文章的整个内容可以被压缩成下面的命题:如果f(x)[a,b]上是连续的,那么

limmaxΔx0k=1nf(xk)Δxk=baf(x)dx=F(x)ba=F(b)F(a)(1)

其中F(x)f(x)的任何一个不定积分。

在几何和物理中有许多其他量本质上可以用相同的方法来处理,例如体积、弧长、表面积和一些基本物理量。每种情况的处理过程都是相同的:独立变量的区间被划分成小的子区间,求解量用某种对应的和来近似,这些和的极限用定积分的形式得到确切值,它可以用基本定理来评估。

在求解曲线下面积的过程中,我们已经知道了极限和的细节,这就是前面文章讲到的。我们没有必要对所有遇到的量都考虑这些细节。所需要的符号既复杂又重复,阻碍了我们对它的直观理解。

本着这种精神,我们将其简化为图1的形式,并用简单与直观的方式来重建(1)中定积分的定义。我们认为曲线下的面积是由许多细长的垂直矩形组成的。在图中,典型的就是高为y宽为dx的窄带,因此面积为

dA=ydx=f(x)dx(2)

其中y=f(x)。这个面积叫做面积的微分单元,或者简称为面积的单元;它可以是区域的任何一个位置,只要确保xa,b 之间的值即可。现在我们将区域面积A看做这些面积单元dA的总和。这个加法用符号表示就是

A=dA(3)

因为面积单元穿过了ab的所有区域,我们可以将(3)表示成更准确的形式

A=dA=ydx=_abf(x)dx(4)

(4)中的最后一步我们得到了定积分,此时写出积分变量和积分极限。用这种方式我们省掉了繁琐的细节,直接得到面积的定积分,而且一点都不用考虑和的极限。

从这个角度来看,积分就是一个数值,我们可以将它分成很多个方便的小块,然后再将他们全部加起来即可。这就是积分过程的直观莱布尼茨方法,我们将在下篇文章中详细说明和加强对它的理解。


这里写图片描述
图1

漫步微积分二十七——曲线下的面积 定积分 黎曼

我们继续讨论我们要解决的问题。y=f(x)y=f(x)是定义在闭区间a≤x≤ba\leq x\leq b上的非负函数,如图1所示。我们如何计算阴影部分(即图像下方,xx轴上方以及垂直直线x=a,x=b...

漫步微积分三十——定积分的性质

代数和几何面积在前面的章节我们考虑了曲线y=f(x)y=f(x)下方和x=a,x−bx=a,x-b之间围成区域的面积,还有两个假设分别是(1)f(x)≥0;(2)a...

【数模学习】Matlab 符号微积分 计算微分、雅可比矩阵、不定积分与定积分、求解微分方程

1.计算微分      函数diff可以用来计算符号表达式的微分,其调用格式如下:      df=diff(f,n);      参数说明:df是微分运算的结果。f是输入的表达式,n是求导的次数,其...
  • wyh7280
  • wyh7280
  • 2015年07月02日 21:58
  • 972

高等数学:第五章 定积分(1)概念与性质 中值定理 微积分基本公式

§5.1  定积分的概念 一、从阿基米德的穷竭法谈起 【引例】从曲线与直线,, 所围图形的面积。  如图:在区间  上插入  个等分点 ,得曲线上点 ,过这些点分别向轴,轴引垂线,得到阶梯形...

微积分,定积分,导数的相关理解

(个人) 因为,在现实世界中,人们发现,在现实世界中,一个事件/情 ,并不是孤立存在的,它与其他的一个或多个事件,都有着非常紧密的联系,存在着某种函数关系,而借助于这种函数关系,那么,我们就可以通过...
  • H002399
  • H002399
  • 2015年05月04日 07:55
  • 565

漫步数理统计三十一——依分布收敛

上篇博文我们介绍了依概率收敛的概念,利用着概念我们可以说统计量收敛到一个参数,而且在许多情况下即便不知道统计量的分布函数也能说明收敛。但是统计量有多接近估计量呢?本篇博文讲的收敛就回答了这个问题。定义...

漫步微积分三十四——体积计算:圆柱壳法

还有一种去体积的方法,往往它比上篇文章的方法更加方便。为了理解这种方法,考虑图1左边所示的区域,也就是,第一象限数轴和所示示曲线y=f(x)y=f(x)围成的区域。如果这个区域绕xx轴旋转,那么图中的...

漫步微积分二十——微分和切线逼近

前面的文章主要关注切线问题,即给定一条曲线,找出它切线的斜率;或者等价地,给定一个函数,求它的导数。除了全面研究导数外,牛顿和莱布尼兹还发现,几何和物理中许多问题需要求导的逆过程。有时叫做切线问题的逆...

漫步微积分三十二——两条曲线间的面积

假设我们给出了两条曲线y=f(x),yg(x)y=f(x),yg(x),如图1所示,在x=a,bx=a,b处有交点并且在区间[a,b][a,b]内第一条曲线位于第二条的上方,为了求出曲线之间的面积,很...

漫步微积分二十八——极限思想下的面积计算

上篇文章中讨论的概念给出了计算面积的实际过程。现在我们利用一些实例来测试这个过程是如何工作的。例1:考虑区间[0,b][0,b]上的函数y=f(x)=xy=f(x)=x。图像(图1)下面的区域是高和底...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:漫步微积分三十一——定积分的直观含义
举报原因:
原因补充:

(最多只允许输入30个字)