漫步微积分三十二——两条曲线间的面积

翻译 2016年08月30日 19:24:10

假设我们给出了两条曲线y=f(x),yg(x),如图1所示,在x=a,b处有交点并且在区间[a,b]内第一条曲线位于第二条的上方,为了求出曲线之间的面积,很自然地想法是使用如图所示垂直的细条。在x处的高度为低点的曲线与高点之间的距离f(x)g(x),其底是dx。因此,面积的单元是

dA=[f(x)g(x)]dx

总面积为

A=dA=ba[f(x)g(x)]dx(1)

我们将较小的a设为积分下限,将b设为上限来计算积分值。这样的话增量(或者说微分)dx将一直是正的。另外还应该指出,当x=a,b时,两个函数产生相同的y值;也就是说,他们是方程f(x)=g(x)的解。为了找到它们,我们需要求解这个方程。


这里写图片描述
图1

我们建议大家不要靠死记硬背记住公式(1),并且机械的将它套用到面积问题上。我们的目标是掌握这个方法,利用几何思想与对问题从无到有的构造出所需公式都是为了达到这个目标。该方法同样适用于水平窄带,往往这样做会更方便。在这种情况下,窄带的宽度将是dy,总面积将通过对y积分得到。

作为大家的辅助手段,对用积分求面积的方法,我们列出了它所遵循的大纲:

  1. 画出要求的面积区域,在图上写下边界曲线的方程并找到他们的交点。
  2. 确定用垂直窄带(宽为dx)还是水平窄带(宽为dy),在图中画出一条窄带。
  3. 着图像并利用曲线边界的方程,写下窄带面积dA,也就是长和宽的乘积。将dA完全用变量(xy)表示出来。
  4. xy的上下限之间积分dA,上下限可以通过检查图像得到。

例1:曲线y=x2,y=4的边界围成的区域如图2所示,如果我们选用垂直窄带,那么它的长度为4x2,面积为dA=(4x2)dx。整个区域的面积为

22(4x2)dx=4x13x322=(883)(8+83)=323

我们建议大家尽可能使用对称来简化计算。在这种情况下,图像左右对称,所以我们只需计算从x=0x=2之间的积分,它是面积的一半,然后乘以2就得到总面积:

220(4x2)dx=2(4x13x3)20=2(883)=323

正如计算展示的那样,这样做有一个好处,就是一个积分的极限是0。


这里写图片描述
图2

如果我们决定用水平窄带,那么长度就是右端的x值减去左端的x值。即yy,所以dA=[y(y)]dy=2ydy,整个面积是

402ydy=43y3/240=323

答案跟以前一样,这并不奇怪,但不管这样令人放心。

我们曾经强调过好的图像对理解以及执行这些过程是多么重要。

例2:曲线y=3x2,y=x+1的边界围成的区域如图3所示。通过求解方程可以很快求出交点,利用y值相等得

3x2x2+x2(x+2)(x1)x=x+1=0=0=2,1

交点是(2,1),(1,2)。垂直窄带的长度为(3x2)(x+1)=2x2x,所以区域的面积可以通过求积分dA=(2x2x)得到,上下限是2,1

12((2x2x)dx=(2x13x312x2)12=(21312)(4+832)=412

在这个问题中,使用水平窄带比较麻烦,因为如果y<2,水平窄带显然是从抛物线左半部分到达到直线的,如果y>2,它是从抛物线左半部分到右半部分,这意味着dA必须根据y<2还是y>2使用不同的公式。


这里写图片描述
图3

例3:求出曲线y=cosx,y=sin2x 在区间0xπ/2上围成的区域面积。

:曲线如图4所示,面积由两个阴影部分组成。这个例子的主要特征是曲线互相交叉,所以开始是第一个曲线在上面,然后是第二个。为了求解它,我们首先需要求出交点,这就意味着我们需要求解方程cosx=sinx

cosx=2sinxcosx,sinx=12x=π6

据此

dA={(cosxsin2x)dxfor 0xπ6(sin2xcosx)dxfor π6xπ2

因此所求的面积为

π/60(cosxsin2x)dx+π/2π/6(sin2xcosx)dx=(sinx+12cos2x)π/60+(12cos2xsinx)π/2π/6=(12+14012)+(121+14+12)=12


这里写图片描述
图4

相关文章推荐

微积分(一)--方向场,积分曲线

名词 1.ODE定义:常微分

漫步微积分二十七——曲线下的面积 定积分 黎曼

我们继续讨论我们要解决的问题。y=f(x)y=f(x)是定义在闭区间a≤x≤ba\leq x\leq b上的非负函数,如图1所示。我们如何计算阴影部分(即图像下方,xx轴上方以及垂直直线x=a,x=b...

漫步微积分二十八——极限思想下的面积计算

上篇文章中讨论的概念给出了计算面积的实际过程。现在我们利用一些实例来测试这个过程是如何工作的。例1:考虑区间[0,b][0,b]上的函数y=f(x)=xy=f(x)=x。图像(图1)下面的区域是高和底...

漫步微积分二十——微分和切线逼近

前面的文章主要关注切线问题,即给定一条曲线,找出它切线的斜率;或者等价地,给定一个函数,求它的导数。除了全面研究导数外,牛顿和莱布尼兹还发现,几何和物理中许多问题需要求导的逆过程。有时叫做切线问题的逆...

漫步微积分三十四——体积计算:圆柱壳法

还有一种去体积的方法,往往它比上篇文章的方法更加方便。为了理解这种方法,考虑图1左边所示的区域,也就是,第一象限数轴和所示示曲线y=f(x)y=f(x)围成的区域。如果这个区域绕xx轴旋转,那么图中的...

漫步微积分十七——最大最小值问题(续)

我们用其他的例子继续讨论上一篇文章的基本方法。例1:圆柱形汤罐头的制造商接了一笔大订单,订单要求罐头的体积为V0V_0。哪种尺寸可以最小化罐头的表面积,也就是所需的金属最少?解:r,hr,h分别表示圆...

漫步微积分十二——隐函数、分数指数

目前我们遇到的大部分函数形式都是y=f(x)y=f(x),yy直接或明确的表示成xx的形式。然而,我们常常看到如下形式的定义 F(x,y)=0(1)\begin{equation} F(x,y)=0...

漫步微积分十三——高阶导数

y=x4y=x^4的导数是y′=4x3y'=4x^3。但是4x34x^3依然可导,12x212x^2。用y′′y''表示,叫做原函数的二阶导。对二阶导y′′=12x2y''=12x^2求导得到三阶导y...

漫步微积分二十三——重力作用下的运动 逃逸速度和黑洞

微积分发展的许多原始灵感来自于力学,这两个主题到今天为止一直是不可分割的。力学建立在牛顿提出的基本原则上。这些原则的陈述需要导数的概念,在本文我们会看到这些应用依赖于积分和微分方程的解。直线运动是沿着...

漫步微积分十——复合函数和链式法则

考虑下面函数的导数 y=(x3+2)5(1)\begin{equation} y=(x^3+2)^5\tag1 \end{equation}根据目前现有的工具,我们可以利用二项式定理将函数展开成多项...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:漫步微积分三十二——两条曲线间的面积
举报原因:
原因补充:

(最多只允许输入30个字)