漫步数学分析一——实数轴

从正整数 0,1,2,3, 开始,然后加入负整数和非整的有理数,通过往有理数中加入所有有理数的非有理极限即可获得实数系。例如,无理数 2 就是增(或单调(monotone))序列 xn 的极限,其中 x2n<2 xn 是有理数,或者用 1,1.4,1.414, 这样的小数序列表示, 2 不是有理数这个事实已经广为人知,而欧几里得首先证明了这个事实。

接下来问题来了,我们如何用正式的方式来执行上面的过程呢?实际上,这个过程有点长但是不难,所以我们在这里只给出一个大纲。要做的第一件事就是将那些我们希望实数具有的重要性质隔离掉,如下所示:

(I) 加法公理。有一个加法运算“+”使得对于所有数 x,y,z ,满足
1. x+y=y+x (交换性)
2. x+(y+z)=(x+y)+z (结合性)
3. 有一个数0使得 x+0=x (存在零元)
4. 对于每个 x ,有一个数w(用 x 表示)使得 x+w=0 (存在加法逆元)

(II) 乘法公理。有一个乘法运算“ ”使得
1. xy=yx (交换性)
2. x(yz)=(xy)z (结合性)
3. 有一个数 10 使得 1x=x (存在单位元)
4. 对于每个 x0 ,存在一个数 v 使得xv=1(存在倒数),写作 v=x1,yx1=y/x
5. x(y+z)=xy+xz (分配律)

(III) 有序公理。有一个序“ ”(更精确点,一种关系)使得
1. xy,yz ,那么 xz (传递性)
2. xy,yx(x=y) (自反性)
3. 对于任意两个元素 x,y ,要么 xy ,要么 yx (三分性)
4. 如果 xy ,那么 x+zy+z
5. 0x,0y 那么 0xy

任何集合或数系,如果他们具有满足加法公理和乘法公理的运算+和 ,那么我们称之为域(field)。例如,有理数是一个域但整数不是。

满足性质 (I),(II),(III) 的称为有序域,根据定义, x<y 意味着 xy xy ,其他大家熟悉的符号也可以引进来,例如数 x 的大小是|x|,如果 x0 ,我们就定义成 x ,如果x0,定义成 x x,y 之间的距离是 |xy| ,它的大小满足三角不等式: |x+y||x|+|y|

利用这些公理就可以推出从高中开始学到的运算法则,例如我们可以用公理来证明 0<1 ,上面公理完整的细节对我们目前的工作不重要,所以我们不加证明的接受这些事实,就当成我们平常熟悉的代数法则。

很明显,要想唯一地表征实数,上面的公理是不充分的,因为有理数也满足这些公理,所以我们需要另一个条件来确保有理数的极限包含在实数系中。

为了陈述这个条件,需要介绍一些与序列相关的定义。令 xn 表示给定的数列,如果对于任意 ε>0 ,存在一个正数 N ,使得对于所以nN的整数 |xnx|<ε 成立,那么我们就成 xn 收敛到 x ,写作limnxn=x或随着 n,xnx

直观上讲,收敛就是当 n 充分大时,xn任意靠近 x ,之后的第二章我们会系统的学习收敛。目前,我们只需要学习下面的完备性公理(completeness axiom)。

对于所有n,如果 xnxn+1 ,那么序列 xn 是增的(或非减),如果有一个数 M 使得对所有n=1,2,3,,|xn|M,那么序列 xn 是有界的。

不难看出序列 xn 顶多收敛到一个点,假设 xn 收敛到 x,y ,那么根据三角不等式 |xy|=|xxn+xny||xxn|+|xny| ,如果 |xy|>0 ,那么将 |xy|/2 作为 ε ,我们可以选择充分大的 N 使得当nN时, |xxn|<|xy|/2,|xny|<|xy|/2 ,由此我们将得出 |xy|<|xy| ,而这时不可能的,所以 |xy|=0 x=y

现在我们陈述完备性公理。
(IV)
1. 完备性公理。如果 xn 是增序列且有上界,那么 xn 收敛到某个数 x
对于条件(IV)的合理性,我们可以考虑递增的小数序列:1,1.4,1.41,1.414, ,它收敛到 2

满足公理 (I) (IV) 的数系叫做全序域(complete ordered field)。条件 (IV) 和有下界的减序列收敛这个条件是等价的,通过观察 (xnx) (xnx) 即可明白这个条件,现在我们结合前面的讨论给出下面的定理。

1 存在唯一的一个全序域数系,我们称之为实数系。

实数系用 R 表示,目前±不含在 R 中,在定理1 中,唯一性意味着满足(I)-(IV)的任意两个系可以表示成一一对应关系,这个关系兼容 +,, 。对于兼容+,举例来说这就意味着第二个系统中的一个数,如果它对应第一个系统中两个数的和,那么它就是相对应第二个系统中两个数的和。目前我们忽略定理1的证明而将其作为我们的起点,证明不难但有点费劲,通过证实十进制扩展具有要求的性质,我们就能证明 R 的存在性。

正如上面所说的,我们不希望花太多时间来了解所有公理结论的细节,但是一些显然的结论还是值得特别关注的,即阿基米德性(Archimedian property):给定任意实数x,有一个整数 N 使得N>x,(这里整数可以用 2=1+1,3=2+1,4=3+1, 来定义)需要注意的是这个结果依赖于完备性公理,并且只用其他公理无法推出这个结论。

完备性公理可以表示成其他非常重要的等价形式,为了陈述这些形式,我们需要一些基本的术语。

1 SR R 的一个子集,那么S仅仅是实数的某个集合(例如,所有0,1之间的有理数),如果对于所有的 xS ,我们有 xb ,那么我们称数 b S的一个上界(upper bound)。

如果 b 不但是S的一个上界,而且小于等于 S 的其他所有上界,那么我们称数b S 的最小上界(least upper bound),如图1。


这里写图片描述
图1

集合(a,b)={xR|a<x<b}叫做开区间(open interval),
[a,b]={xR|axb} 叫做闭区间(closed interval)。

例如,闭区间[0,1],开区间(0,1)和所有小于1的有理数最小上界都是1。

注意: S 的最小上界(也叫做S的supremum)表示成 sup(S) lub(S)

S 最多有一个最小上界。如果b,b都是最小上界,那么 b 小于等于所有其他上界bb,同样的, bb ,所以得出 b=b

集合不一定有上界,例如整个实数系就没有上界,而且正整数也没有上界,考虑退化的情况即空集 ,我们将任何数都看成它的上界。

通过观察可以看出如果 b S的上界而且 bS ,那么 b 是最小上界,这个证明非常简单,它必须说明如果d S 的任何一个上界,那么bd,但是 bS 而且 d 是上界,所以bd满足要求。

最小上界的定义有另一个非常有用的陈述,即定理2,有时候应用定理2会更加方便。

2 SR ,当且仅当 b S的上界且对于每个 ε>0 ,有一个 xS 使得 x>bε ,那么 bR S 的最小上界。

这个定理直观上非常明显,因为b就像位于集合 S 的顶端且它与集合S之间没有间隔,所以对于任意 ε>0 ,我们可以将 x 取成在b下方且与它的距离不超过 ε 的点。[警告:这个论点只是给出一个直观上的感受,切不可与严格的证明相混淆]

如果 S 没有上界,我们就说sup(S)是无限的并写作 sup(S)=+ ,同样的,集合 S 的下界(lower bound) 是对于所有xS,使得 bx 的数 b ,当且仅当b 是下界且对于所有 S 的下界c,cb,那么称 b 是最大下界(greatest lower bound)。与最小上界一样,最大下界如果存在的话,它也是唯一的。有时最大下界称为infimum并表示成inf(S) glb(S) 。 如定理2所述,数 c 要想是S的最大下界,当且仅当 c 是下界且对于每个ε>0有一个 xS 使得 x<c+ε ,另外如果 S 没有下界,那么我们写成inf(S)=

我们需要的另一个符号是柯西序列(Cauchy sequence)。

2 对于 R 中的一个序列xn,如果对每个 ε>0 ,有一个整数 N (依赖于ε)使得 nN,mN |xnxm|<ε ,那么我们成该序列是柯西序列。

这个条件直观上意味着序列会聚成一团;也就是序列的所有元素在序列的充分远处互相之间会任意的接近。

如果 xn 收敛到 x ,那么xn是柯西序列。给定 ε>0 ,选择一个 N 使得nN |xnx|<ε/2 ,那么对于 n,mN ,我们有 |xnxm|=|xnx+xxm||xnx|+|xxm|<ε/2+ε/2=ε ,这就证明了我们的断言。这个陈述的逆在定理3中,这里我们使用了三角不等式 |y+z||y|+|z| ,而它的特殊情况 |ab||ac|+|cb| 非常有用。接下来的定理会给出实数的一些基本命题。

3
1. 令 S R中的非空集合且有上界,那么 S R中有最小上界。
2. 令 P R中的非空集合且有下界,那么 P R中有最大下界。
3. R 中的每个柯西序列xn收敛到 R 中的一个数x

这个结果非常明显。实际上,如果 R 的有界子集没有最小上界,那么集合顶部将会有一个洞并且S中趋向这个洞的一系列元素无法收敛到 R 中的元素,条件(ii)同样如此。条件 iii 可以这么理解:如果我们忽略柯西序列的前 N 项,那么剩余项将会聚到一起,随着我们忽略的越多,剩余项将会更加聚集且到达某个极限值,也就是这个序列的极限。要想更加精确地明白这个过程就需要更多的耐心,证明是我们唯一的来源。

利用我们给出的证明方法,不难看出条件(i),(ii),(iii)的每一个都与有序域的完备性公理是等价的。

这里我们简要的回顾并讨论了实数轴,接下我们给出一些具体实例。

1 S=xR|x2+x<3 ,求出 sup(S),inf(S)

考虑 y=x2+x 的图像,利用基本的微积分知识可知在 x=1/2 处, y 取最小值,所以S的图像可能如图2所示,当 x2+x=3 时,从图中很明显的可以看出 sup,inf ,或者从二项公式

x=1±1+122=(1±13)2

可得

sup(S)=(131)2,inf(S)=(13+1)2

2 x0=0,x1=2,x2=2+x1,,xn=2+xn1, ,说明 xn 收敛。

我们将说明 xn 是递增且有上界,这样就证明了该断言。注意每个 xn 是非负的,那么我们必须说明 rn=xn+1xn0 ,这里用归纳法证明。当 n=0 时明显成立,假设 n1 时成立,那么

rn=xn+1xn=2+xn2+xn1=xnxn12+xn+2+xn1=rn1(2+xn+2+xn1)

所以 rn10 意味着 rn0 ,因此 xn 是递增的。接下来我们要说明 xn 有上界,例如我们可以用归纳法证明 xn5 。显然, x0,x15 ,假设 xn15 ,那么

xn=2+xn12+575

因此 xn 是递增且有上界,所以它是收敛的。


这里写图片描述
图2

3 xn 是实数序列,且满足 |xnxn+1|1/2n ,说明 xn 收敛。

我们将说明 xn 是柯西序列,那么利用条件 (iii) 即可得到结果。利用三角不等式可得

|xnxn+k||xnxn+1|+|xn+1xn+2|++|xn+k1xn+k|12n+12n+1++12n+k22n

(因为如果 0<r<1 ,那么 a+ar+ar2+=a/(1r) )。

因此如果 mn 并且给定 ε>0 ,只选择使 1/2N1<ε N ,那么|xnxm|1/2n1,于是我们得到了一个柯西序列。

4 证明当 n 1/n0

根据定义,给定任意数 ε>0 ,我们必须证明有一个整数 N 使得如果nN,那么 |1/n0|<ε 。我们令 1/N<ε ,这样的话只需要选择 N>1/ε 即可(根据阿基米德性可知这是可能的)。

5 说明当 n n2+1n!0

我们必须说明当 n 充分大时,n2+1n!充分小。我们按下列方式估计 n2+1n! 有多大:

n2+1n!2n2n!=2nn!=2(n1)!2n1

所欲给定 ε>0 ,选择 N 使其N>2ε+1,那么 nN 意味着

0n2+1n!2n12N1<ε

这就证明了断言。

例6是出自公理的代数法则,在实际中,像这样的结论我们都认为是理所当然的。

6 利用有序域的公理证明
1. 负元是唯一的;
2. 对所有 x,0x=0
3. (x)(y)=xy
4. 0<1

对于 (a) ,我们注意到如果 x+w=0,x+y=0 ,那么( y 加到x+w=0上) y+(x+w)=y+0=y ,根据条件 I(ii) ,左边是 (y+x)+w=0+w=w ,所以 y=w ,因此符号 x 是明确的。

对于 (b) ,我们有0+0=0,所以利用 II(i),II(v) 我们得到 0x=(0+0)x=0x+0x ,两边都加上 (0x) 0x=0

对于 (c) 我们首先说明 (x)y=(xy) 。事实上,根据 II(i),II(v) (x)y+xy=(x+x)y=0y=0 ( (b) ),接下来,因为 (11)(1)=0 并且 (1)(1)+(1)(1)=1+(1)(1) ,两边分别加1可得 (1)(1)=1 ,因为我们已经证明了 (1)(x)=(1x)=x ,所以

(x)(y)=(1)x(1)y=(1)(1)xy=1xy=xy

最后,对于 (d) ,根据 III(iii) 0<1 的其他可能只有 10 ,两边加-1得到 01 (利用 III(iv) ),那么 x=1,y=1 将得出 01 ( III(v) ),因为 01 ,所以我们有 0<1

  • 5
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值