漫步数学分析五——闭集

翻译 2017年01月02日 22:49:05

3 对于Rn中的集合B,如果它在Rn中的补(即集合RnB)是开集,那么它是闭集。

例如,单点是闭集,含有边界的单位圆组成的集合是闭集。大致来说,当集合包含它的边界点时它就是闭的(直观感觉可从图6中看出),如图1所示。


这里写图片描述
图1

存在既不是开集又不是闭集的集合。例如在R1,中半开半闭区间(0,1]既不是开集也不是闭集,因此如果A不是开集,我们不能说它是闭集,接下来的定理与定理2类似。

3
(i)Rn中有限个闭子集的并是闭集。
(ii)Rn中任意个闭子集的交是闭集。

这个定理是直接从定理2得出的,只需要注意当取补的时候,并与交需要互相变换,所以这里就不在证明。

1S={(x,y)R2|0<x1,0y1}S是闭集吗?


这里写图片描述
图2

观察图2,直观上看S不是闭集,因为y 轴上的边界部分不在S中,另外它的补也不是开集,因为y 轴上点的ε邻域与S相交(因此不在RnS)。

2S={(x,y)R2|x2+y21}S是闭集吗?

答案是肯定的。S就是包含边界的单位圆,它的补明显是开集,因为对于(x,y)R2S,半径为ε=x2+y21完全含于R2S中(如图3所示)。


这里写图片描述
图3

3说明Rn中任何有限集是闭集。

单点是闭集,所以我们可以应用定理3(i)

相关文章推荐

漫步数学分析十八——紧集上连续函数的有界性

现在我们证明连续实值函数的一个重要性质,即有界定理。有界定理表明连续函数在紧集上是有界的并且在集合上的某些点取得最大值与最小值,准确的描述放到定理5中。为了理解上面的结论,我们考虑非紧集上函数会发生什...

漫步数学分析十四——连通集

定义3\textbf{定义3} 集合A⊂RnA\subset R^n为连通集,如果不存在两个非空开集U,VU,V,使得A⊂U∪V,A∩U≠∅,A∩V≠∅,A∩U∩V=∅A\subset U\cup V...

漫步数学分析十一——紧集

在给出RnR^n中紧集的精确定义前,我们需要介绍一些术语。对于集合A⊂RnA\subset R^n,当且仅当存在一个常数M≥0M\geq0使得A⊂D(0,M)A\subset D(0,M),那么就称该...

漫步数学分析三——开集

为了定义开集,我们首先介绍ε−disc\varepsilon-\text{disc}的概念。定义1\textbf{定义1} 对于每个固定的x∈Rnx\in R^n以及ε>0\varepsilon>0,...

漫步数学分析二十七——Stone-Weierstrass定理

在讨论连续函数与一致收敛时,最基本的两个结论是上篇文章讨论的Arzela-Ascoli定理以及本文要讨论的斯通-魏尔斯特拉斯(Stone-Weierstrass)定理。斯通-魏尔斯特拉斯定理主要是为了...

漫步数学分析十三——路径连通

第二个重要的主题是连通性,我们直观上知道想应用连通性到哪种集合上,然而,我们的直观在判断更复杂的集合时可能会失效,例如如果R2R^2中的集合为{(x,sin1/x)|x>0}∪{(0,y)|y∈[−1...

漫步数学分析十七——连续映射上的运算

连续函数的复合应该是连续的,这个结论从直观上不太令人信服。对于函数f:A→Rm,g:B→Rpf:A\to R^m,g:B\to R^p其中f(A)⊂Bf(A)\subset B,我们定义复合g∘f:A...

漫步数学分析八——集合边界

如果我们考虑R2R^2中的单位圆,那么其边界显然就是圆。但是对于更加复杂的情况,例如有理数,它的边界是什么在直观上就不明显,因此我们需要精确的定义。定义6\textbf{定义6} 对于R2R^2中的集...

漫步数学分析三十六——泰勒定理

我们讨论一般函数f:A⊂Rn→Rmf:A\subset R^n\to R^m的泰勒公式,为此我们首先讨论高阶导数。对于f:Rn→Rf:R^n\to R,定义高阶偏导没有问题;我们仅仅迭代偏导的过程 ...

漫步数学分析九——级数

与R1R^1类似,我们可以考虑RnR^n中的级数。定义9\textbf{定义9} 对于级数Σ∞k=0xk\Sigma_{k=0}^\infty x_k,其中xk∈Rnx_k\in R^n,如果它的部分...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:漫步数学分析五——闭集
举报原因:
原因补充:

(最多只允许输入30个字)