关闭

漫步数学分析五——闭集

标签: 闭集
244人阅读 评论(0) 收藏 举报
分类:

3 对于Rn中的集合B,如果它在Rn中的补(即集合RnB)是开集,那么它是闭集。

例如,单点是闭集,含有边界的单位圆组成的集合是闭集。大致来说,当集合包含它的边界点时它就是闭的(直观感觉可从图6中看出),如图1所示。


这里写图片描述
图1

存在既不是开集又不是闭集的集合。例如在R1,中半开半闭区间(0,1]既不是开集也不是闭集,因此如果A不是开集,我们不能说它是闭集,接下来的定理与定理2类似。

3
(i)Rn中有限个闭子集的并是闭集。
(ii)Rn中任意个闭子集的交是闭集。

这个定理是直接从定理2得出的,只需要注意当取补的时候,并与交需要互相变换,所以这里就不在证明。

1S={(x,y)R2|0<x1,0y1}S是闭集吗?


这里写图片描述
图2

观察图2,直观上看S不是闭集,因为y 轴上的边界部分不在S中,另外它的补也不是开集,因为y 轴上点的ε邻域与S相交(因此不在RnS)。

2S={(x,y)R2|x2+y21}S是闭集吗?

答案是肯定的。S就是包含边界的单位圆,它的补明显是开集,因为对于(x,y)R2S,半径为ε=x2+y21完全含于R2S中(如图3所示)。


这里写图片描述
图3

3说明Rn中任何有限集是闭集。

单点是闭集,所以我们可以应用定理3(i)

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:131956次
    • 积分:3617
    • 等级:
    • 排名:第9386名
    • 原创:12篇
    • 转载:0篇
    • 译文:226篇
    • 评论:77条
    最新评论