漫步数学分析五——闭集

翻译 2017年01月02日 22:49:05

3 对于Rn中的集合B,如果它在Rn中的补(即集合RnB)是开集,那么它是闭集。

例如,单点是闭集,含有边界的单位圆组成的集合是闭集。大致来说,当集合包含它的边界点时它就是闭的(直观感觉可从图6中看出),如图1所示。


这里写图片描述
图1

存在既不是开集又不是闭集的集合。例如在R1,中半开半闭区间(0,1]既不是开集也不是闭集,因此如果A不是开集,我们不能说它是闭集,接下来的定理与定理2类似。

3
(i)Rn中有限个闭子集的并是闭集。
(ii)Rn中任意个闭子集的交是闭集。

这个定理是直接从定理2得出的,只需要注意当取补的时候,并与交需要互相变换,所以这里就不在证明。

1S={(x,y)R2|0<x1,0y1}S是闭集吗?


这里写图片描述
图2

观察图2,直观上看S不是闭集,因为y 轴上的边界部分不在S中,另外它的补也不是开集,因为y 轴上点的ε邻域与S相交(因此不在RnS)。

2S={(x,y)R2|x2+y21}S是闭集吗?

答案是肯定的。S就是包含边界的单位圆,它的补明显是开集,因为对于(x,y)R2S,半径为ε=x2+y21完全含于R2S中(如图3所示)。


这里写图片描述
图3

3说明Rn中任何有限集是闭集。

单点是闭集,所以我们可以应用定理3(i)

漫步数学分析三——开集

为了定义开集,我们首先介绍ε−disc\varepsilon-\text{disc}的概念。定义1\textbf{定义1} 对于每个固定的x∈Rnx\in R^n以及ε>0\varepsilon>0,...
  • u010182633
  • u010182633
  • 2016年12月21日 22:44
  • 462

漫步数学分析十四——连通集

定义3\textbf{定义3} 集合A⊂RnA\subset R^n为连通集,如果不存在两个非空开集U,VU,V,使得A⊂U∪V,A∩U≠∅,A∩V≠∅,A∩U∩V=∅A\subset U\cup V...
  • u010182633
  • u010182633
  • 2017年01月18日 16:58
  • 246

漫步数学分析十一——紧集

在给出RnR^n中紧集的精确定义前,我们需要介绍一些术语。对于集合A⊂RnA\subset R^n,当且仅当存在一个常数M≥0M\geq0使得A⊂D(0,M)A\subset D(0,M),那么就称该...
  • u010182633
  • u010182633
  • 2017年01月14日 15:41
  • 521

漫步数学分析番外五(上)

定理1\textbf{定理1} 令fk:A→Rmf_k:A\to R^m是连续函数并且假设fk→ff_k\to f(一致),那么ff是连续的。证明:\textbf{证明:}因为fn→ff_n\to f...
  • u010182633
  • u010182633
  • 2017年03月08日 20:09
  • 162

漫步数学分析番外五(下)

接下来我们不证明定理10,而是更加一般的结论。定理10′\textbf{定理10}^\prime 令XX是一个完备度量空间,令T:X→XT:X\to X是一个压缩映射:d(T(x),T(y))≤λd(...
  • u010182633
  • u010182633
  • 2017年03月09日 20:17
  • 145

漫步数学分析二——欧几里得空间

定义3\textbf{定义3} 欧几里得n−n-空间是由所有有序的nn 元实数组成的并且用RnR^n来表示。象征性的符号为 Rn={(x1,…,xn)|x1,…,xn∈R} R^n=\{(x_1,\...
  • u010182633
  • u010182633
  • 2016年12月13日 19:46
  • 621

漫步数学分析十五——连续

连续函数有一个重要的性质,那就是当xx靠近x0x_0时,f(x)f(x)靠近f(x0)f(x_0)(如图???\ref{fig:4-1}所示)。另一方面,在图2中,即使xx非常靠近x0x_0,但是f(...
  • u010182633
  • u010182633
  • 2017年02月14日 20:02
  • 273

漫步数学分析二十九——幂级数

本篇文章我们介绍无限级数的相关理论,我们先从幂级数开始。定义5\textbf{定义5} 幂级数就是形如Σ∞k=0akxk\Sigma_{k=0}^\infty a_kx^k的级数,其中系数aka_k是...
  • u010182633
  • u010182633
  • 2017年03月07日 22:17
  • 197

漫步数学分析十——序列

定义7\textbf{定义7} 令xkx_k是RnR^n中的点列,如果对每个包含xx的开集UU(或者称为xx的邻域),有一个NN使得k≥Nk\geq N时xk∈Ux_k\in U,那么我们说xkx_k...
  • u010182633
  • u010182633
  • 2017年01月10日 14:29
  • 239

漫步数学分析一——实数轴

从正整数0,1,2,3,…0,1,2,3,\ldots开始,然后加入负整数和非整的有理数,通过往有理数中加入所有有理数的非有理极限即可获得实数系。例如,无理数2√\sqrt2就是增(或单调(monot...
  • u010182633
  • u010182633
  • 2016年12月12日 20:37
  • 615
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:漫步数学分析五——闭集
举报原因:
原因补充:

(最多只允许输入30个字)