漫步数理统计三十一——依分布收敛

上篇博文我们介绍了依概率收敛的概念,利用着概念我们可以说统计量收敛到一个参数,而且在许多情况下即便不知道统计量的分布函数也能说明收敛。但是统计量有多接近估计量呢?本篇博文讲的收敛就回答了这个问题。

1 (依分布收敛) {Xn} 是一系列随机变量, X 是随机变量。FXn,FX分别是 Xn,X 的cdf,令 C(Fx) 表示 FX 连续的点集合。我们说 Xn 依分布收敛到 X ,如果

limnFXn(x)=FX(x),for all xC(FX)

表示为

XnDX

1 在统计与概率论中,依概率收敛与依分布收敛称为渐进理论,我们经常说 X 是序列{Xn}的渐进分布或极限分布,或者我们不说 XnDX ,其中 X 满足标准正态分布,我们写为

XnDN(0,1)

显然右边是一个分布而不是随机变量,但是这么写非常方便。另外我们说 Xn 满足极限标准正态分布意味着 XnDX ,其中 X 满足标准正态分布,或等价的XnDN(0,1)

之所以之考虑连续点也是有原因的,考虑下面的例子。 Xn 是随机变量,所有的质量在点 1n 处,其他地方均为0。如图所示 Xn 的质量收敛到0。在不连续点处, limFXn(0)=01=FX(0) ;而在连续点处(即 x0 ), limFXn(x)=FX(x) ,因此根据定义 XnDX

依概率收敛说明的是一系列随机变量 Xn 接近另一个随机变量 X ,另一方面,依概率收敛只关心cdfFXn,FX。举个简单的例子, X 是pdf为fX(x)的随机变量,它关于0对称;即 fX(x)=fX(x) 。那么很容易说明 X 的密度也是 fX(x) ,所以 X,X you相同的分布,定义随机变量 Xn 的序列为

Xn={XXnn

显然对所有的 x,FXn(x)=FX(x) ,所以 XnDX ,另一方面序列 Xn 不接近 X ,尤其是在概率上XnX

1 X¯n 的cdf为

Fn(x¯)=x¯11/n2πenw2/2dw

利用变量代换可得

Fn(x¯)=nx¯12πev2/2dv

显然

limnFn(x¯)=0121x¯<0x¯=0x¯>0

函数

F(x¯)={01x¯<0x¯0

是cdf且在所有 F(x¯) 的连续点 limnFn(x¯)=F(x¯) ,而在不连续点 x¯=0,limnFn(0)F(0)

2 即便序列 X1,X2,X3, 依分布收敛到随机变量 X ,我们一般不能通过取Xnpmf的极限确定 X 的分布,考虑下面的pmf

pn(x)={10x=2+n1elsewhere

显然对所有的 x,limnpn(x)=0 ,这说明对 n=1,2,3,,Xn 不会依概率收敛,然而 Xn 的cdf为

Fn(x)={01x<2+n1x2+n1


limnFn(x)={01x2x>2

因为

F(x)={01x<2x2

是cdf且在 F(x) 的所有连续点处 limnFn(x)=F(x) ,所以 X1,X2,X3, 依分布收敛到cdf为 F(x) 的随机变量。

上面的例子说明一般而言我们不能考虑pmf或pdf来确定极限分布,但是在某些条件下确实可以的,如下例所示。

3 Tn 满足自由度为 n t分布, n=1,2,3, ,所以它的cdf为

Fn(t)=tΓ[(n+1)/2]nπΓ(n/2)1(1+y2/n)(n+1)/2dy

其中积分函数为 Tn 的pdf fn(y) ,因此

limnFn(t)=limntfn(y)dy=tlimnfn(y)dy

由勒贝格控制收敛定理可知当 |fn(y)| 被一个可积函数控制时,积分与极限元算可以互换。因为

|fn(y)|10f1(y)

且对所有实数 t

t10f1(y)dy=10πarctant<

因此我们通过求出 Tn pdf的极限求出极限分布。即

limnfn(y)=limn{Γ[(n+1)/2]n/2Γ(n/2)}limn{1(1+y2/n)1/2}×limn12π[(1+y2n)]n/2

利用初等微积分的事实

limn(1+y2n)n=ey2

第三部分显然时标准正态分布的pdf,第二项极限明显为1,根据斯特林公式可知第一项极限也为1,所以我们有

limnFn(t)=t12πey2/2dy

因此 Tn 满足极限标准正态分布。

2 为了简化下面定理的证明,我们利用序列的 lim,lim 。具体细节这里不再讨论了,只给出理解下面证明所需要的一些性质,令 {an} 是实数序列且定义两个子序列为

bncn=sup{an,an+1,},n=1,2,3,=inf{an,an+1,},n=1,2,3,

{cn} 是非减序列, {bn} 是非增序列,因此他们的极限存在(可能是 ± ),我们分别用 limnan,limnan 表示,进一步对所有 n,cnanbn ,如果 limnan=limnan ,那么 limnan 存在且为 limnan=limnan

假设 {pn} 是概率序列且 limnpn=0 ,因为 0pnsup{pn,pn+1,} ,所以我们有 limnpn=0 。另外对于任意序列 {an},{bn} ,满足 limn(an+bn)limnan+limnbn

如下面定理说述,依分布收敛比依概率收敛要弱,所以依分布收敛常被称为弱收敛。

1 如果 Xn 依概率收敛到 X ,那么Xn依分布收敛到 X

x FX(x)的连续点,令 ϵ>0 我们有

FXn(x)=P[Xnx]=P[{Xnx}{|XnX|<ϵ}]+P[{Xnx}{|XnX|ϵ}]P[Xx+ϵ]+P[|XnX|ϵ]

基于上面的不等式以及事实 XnPX ,我们可以看出

limnFXn(x)FX(x+ϵ)

为了得到下界,我们用同样的处理方式得到

P[Xn>x]P[Xxϵ]+P[|XnX|ϵ]

因此

limnFXn(x)FX(xϵ)

根据 lim,lim 的关系可得

FX(xϵ)limnFXn(x)limnFXn(x)FX(x+ϵ)

ϵ0 即得到答案。 ||

考虑 (1) 中的随机变变量序列 {Xn} XnDX,XnPX ,所以一般情况下上面定理的逆不成立。然而如果 X 退化成下面定理的时候就成立。

2如果 Xn 依分布收敛到常数 b ,那么Xn依概率收敛到 b

ϵ>0 给定,那么

limnP[|Xnb|ϵ]=limnFXn(b+ϵ)limnFXn(bϵ0)=10=1

得证。 ||

下面定理非常有用:

3 假设 Xn 依分布收敛到 X Yn依概率收敛到0,那么 Xn+Yn 依分布收敛到 X

接下来给出两个一般的结论。

4假设 Xn 依分布收敛到 X g在支撑 X 上是连续函数,那么g(Xn)依分布收敛到 g(X)

5 Xn,X,An,Bn 是随机变量且 a,b 是常数,如果 XnDX,AnPa,BnPb ,那么

An+BnXnDa+bX

与依分布收敛相关的另一个有用概念为随机变量序列依概率有界。

首先考虑cdf为 FX(x) 的随机变量 X ,那么给定ϵ>0,我们可以用下面的方式界定 X 。因为FX的下极限是0而上极限是1,所以我们可以找到 η1,η2 ,使得

FX(x)<ϵ/2 for xη1, FX(x)>1(η/2) for xη2

η=max{|η1|,|η2|} ,那么

P[|X|η]=FX(η)FX(η0)1(ϵ/2)(ϵ/2)=1ϵ

因此无界的随机变量(例如 X N(0,1))用上面的方式也是有界的,这是非常有用的概念,定义如下。

2 (依概率有界)我们说随机变量序列 {Xn} 依概率有界,如果对所有 ϵ>0 ,存在常数 Bϵ>0 以及整数 Nϵ 使得

nNϵP[|Xn|Bϵ]1ϵ

现在考虑一个随机变量序列 {Xn} ,它收敛到cdf为 F 的随机变量X。令 ϵ>0 且选择 η 使得 (2) X 成立,我们可以始终选出η使得 η,η F 的连续点,那么我们有

limnP[|Xn|η]limnFXn(η)limnFXn(η0)=FX(η)FX(η)1ϵ

为了更精确,我们选择大的 N 使得nN P[|Xn|η]1ϵ

6 {Xn} 是随机变量序列且 X 是随机变量,如果依分布XnX,那么 {Xn} 依概率有界。

但是上面的逆一般不成立。可以将依概率有界的序列看成 |Xn| 的概率质量不会大到

7 {Xn} 是依概率有界的随机变量序列, {Yn} 是依概率收敛到0的随机变量序列,那么

XnYnP0

ϵ>0 ,选择 Bϵ>0 和整数 Nϵ 使得

nNϵP[|Xn|Bϵ]1ϵ

那么

limnP[|XnYn|ϵ]limP[|XnYn|ϵ,|Xn|Bϵ]+limnP[|XnYn|ϵ,|Xn|>Bϵ]limnP[|Yn|ϵ/Bϵ]+ϵ=ϵ

得证。 ||

  • 19
    点赞
  • 48
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
引用中给出了依概率收敛的定义,即$\lim\limits_{n\rightarrow\infty}P\{|X_n-X|\ge\epsilon\}=0$,记为$X_n\xrightarrow{P}X$。这个定义表示对于给定的任意小的正数$\epsilon$,随着$n$趋向于无穷大,随机变量$X_n$以概率$1$接近于$X$。 引用中给出了依概率收敛的证明方法。证明的过程是通过对累积分布函数$FX_n(x)$进行分析来得到的。具体地,证明使用了事件的交集和并集的性质,以及随机变量$X_n$和$X$之间的距离$|X_n-X|$。根据这些性质,我们可以得到$FX_n(x)$与$FX(x)$之间的关系,并通过控制$FX_n(x)$和$FX(x)$之间的差异来证明依概率收敛的定义。 综上所述,依概率收敛是一种随机变量序列以概率$1$收敛于某个随机变量的性质。它可以通过分析累积分布函数来进行证明。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [读书笔记:收敛性 ← 随机过程](https://blog.csdn.net/hnjzsyjyj/article/details/123285972)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *2* *3* [漫步数理统计三十一——依分布收敛](https://blog.csdn.net/u010182633/article/details/73252655)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值