【第22期】观点:IT 行业加班,到底有没有价值?

pandas-series总结

原创 2016年08月31日 10:27:49
#pandas的学习
#Series 一组数组已经与这组数组的数据标签(索引)完成的
import pandas as pd
obj=pd.Series([4,7,-5,3])
print(obj)
#可以自己建立索引
obj2=pd.Series([4,7,-5,3],index=['a','b','c','d'])
print(obj2)
#可以通过索引的方式选取对应的数值
print(obj2['a'])
#应该可以多个索引,但未成功
##Series里面可以进行计算
print(obj2[obj2>0])
print(obj2>0)
print(obj2*2)
#以上三个的输出
# a    4
# b    7
# d    3
# dtype: int64
# a     True
# b     True
# c    False
# d     True
# dtype: bool
# a     8
# b    14
# c   -10
# d     6
# dtype: int64
#用来判断索引是不是在这里面,只能判断索引
print('b'in obj2)
#如果数据在python的字典中,可以直接通过字典来创建Series
sdata={'Ohio':35000,'Texas':710000,'Oregon':16000,'Utah':5000}
obj3=pd.Series(sdata)
print(obj3)
#如果只传入一个字典的话,Series的索引就是原字典的键(有序排列的)额妹子嘤啊!!
states=['a','b','c','d']
obj4=pd.Series(sdata,index=states)
print(obj4)
#输出下面这一坨,表示缺失,也就是没找到数据,只能是字典默认索引,不能修改
# a   NaN
# b   NaN
# c   NaN
# d   NaN
# dtype: float64
#可以用来判断是不是缺失数据
print(obj4.isnull())
#Series 最重要的一个功能是 自动对其不同索引的数据,索引号相同的相计算,索引号不同的都保留,又是一个额妹子嘤的功能
print(obj3+obj4)
#Series 对象本身及其索引都有一个name属性,可以给Series加上,类似表格的表头,不完全正确
obj4.name='population'
obj4.index.name='state'
print(obj4)
#输出结果
# state
# a   NaN
# b   NaN
# c   NaN
# d   NaN
# Name: population, dtype: float64
#
# Series的索引可以通过赋值的方式去修改
obj4.index=['qwe','dd','_','ddd']
print(obj4)
#输出结果
# qwe   NaN
# dd    NaN
# _     NaN
# ddd   NaN
# Name: population, dtype: float64
版权声明:本文为博主原创文章,未经博主允许不得转载。 举报

相关文章推荐

pandas总结(一)——Series的使用

pandas总结(一)——Series的使用

python pandas 介绍

一直在用python的机器学习包,但是始终感觉搞的不爽,所以决定用pandas玩玩。 一、      数据类型,Series 是1-D的,DataFrame是2-D的,其他两种我用不上。   二、      Series...

程序员升职加薪指南!还缺一个“证”!

CSDN出品,立即查看!

highcharts报表关于series点击文本或者符号的触发事件

1:Highcharts点击legend symbol切换并没改变图的可视状态,如何实现符号或文本都触发? 通过看源码我们发现,series事件只是针对标题项进行click事件处理,而图列legendSymbol并没有做click事件处理, 我们知道highcharts.js源码中是通过ser...

python-pandas-Series和DataFrame的基本功能

python pandas Series和DataFrame的索引、切片、过滤,算术运算与数据对齐,函数映射,排序、重复的轴索引

量化分析师的Python日记【第5天:数据处理的瑞士军刀pandas】

 http://q.datayes.com   <p class="MsoNormal" style="background: #f
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)