经典计算机视觉论文笔记——《Robust Real-Time Face Detection》

原创 2016年06月01日 20:40:00

        第一次读这篇传奇之作大概是九年前了,也就是2007年,而那时距论文正式发表(2004年)也已经有四年之久了。现在读来,一些想法,在深度学习大行其道的今天仍然具有借鉴意义,让人敬佩不已。

        VJ人脸检测器应该是历史上第一个成功商业应用的实时人脸检测器。我估计现在相机和手机上的人脸检测算法绝大部分还是VJ或VJ算法的徒子徒孙。OpenCV当年也是凭借VJ算法的集成而一炮走红,到现在还是最主流的计算机视觉算法库。本人在真实环境下亲测,2010年后的许多能在FDDB测评主页上露个脸的开源算法,其实效果都不见得会比VJ算法好多少。

算法创新点
创新点 作用
积分图

加速haar特征计算的巧妙点子。一劳永逸,去掉特征计算中的冗余。

AdaBoost人脸检测器

特征选择+分类器融合。对adaboost的思想进行合理改造,一个haar特征对应一个弱分类器,弱特征组合成强特征,弱分类器组合成强分类器。

级联结构

由粗到精的检测策略,加速的同时又能保证精度。先在前期用快速算法把大量非人脸去掉,平衡后期慢速的更精细分类开销。









一些值得反思的细节

  • AdaBoost算法是1995年提出的,这篇论文正式发表是在2004年。如此经典的boosting思想怎么没早一点被人发扬?
  • 实验环境:384*288分辨率,700MHz Pentium3,15帧每秒。现在主流摄像头分辨率是640*480,但硬件计算能力要远远超越当时,24帧每秒毫无压力。
  • 一幅图像上非人脸窗口占绝大多数,自然会想到先快速把大量非人脸干掉的cascade的策略。
  • Haar特征只是三种特征(左右和上下矩形相减算一种),表达能力有限。但由于多比例伸缩、平移,构成了一个庞大的特征集合,表达能力爆表。
  • 在检测不同大小的人脸时,没有采用金字塔策略,而是直接用不同尺度的人脸检测器在同一幅图像上扫。作者认为生成金字塔太慢。但除了24*24尺度的,其它尺度的检测器的cascade细节几乎没有介绍。不知道是不是我搞错了?
  • 24*24的图像上,全部的Haar特征有160000个!最后cascade选择出来的一共有6060个特征。
  • 积分图的计算也是非常快的,从左上角开始递归计算,没有冗余。
  • AdaBoost算法的目标是拟合训练集。因为单个弱分类器的拟合太差了。但是,如果一个算法本身对训练集拟合的就很好了,比如深度学习,就不能看作是一个弱分类器,不适合用于AdaBoost框架。
  • 在分类器类型一致的情况下,不同的特征就代表了不同的分类器。特征组合和分类器组合就是一回事。
  • AdaBoost的每次迭代,只和前一次的迭代结果有关。
  • cascade共包含38个AdaBoost分类器,复杂度逐渐递增。复杂度的递增是通过采用的样本越来越难分、特征数量越来越多实现的。
  • 检测出有重叠的人脸时,没有用目前主流的IOU去重。毕竟年代太古老了。

借鉴之处

  • cascade的思想。许多检测问题,负类会在样本中占绝大多数比重,可以先在保证正类检测率近100%的情况下,去掉大量负类。再通过更精细的算法继续精准分类。
  • 想想算法中有没有冗余计算之处,并加以优化。
  • AdaBoost的生命力长青。参考迁移学习中的TrAdaBoost。
  • 某些情况下,特征就代表分类器,不需要分得太清。
  • 梯度类型的特征就是牛逼!参考SIFT,HOG,LBP。






版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

10年后再看Robust Real-Time Face Detection(二) 之积分图

我们知道, 如果采用Naive 的方法去计算矩形特征值是相当的玛

10年后再看Robust Real-Time Face Detection(二) 之学习分类函数

给定我们一个特征集合, 一个训练样本集(也就是一幅幅样本图像。 图像可能是有人脸的图像(称为positive images), 图像也可能不含人脸的图像(negative images))。 那么我们...

10年后再看Robust Real-Time Face Detection(一)

这篇论文是人脸检测上的jingdian

10年后再看Robust Real-Time Face Detection(二) 之特征

论文中检测算法采用的算法是基于特征的。 如今现在任何一篇计算机视觉的论文基本采用的都是基于特征的了。 也就是首先给定一幅图像, 我们一般第一步就是根据我们的视觉任务提取特征。现在很难再找到基于像素级的...

10年后再看Robust Real-Time Face Detection(二) 之特征讨论

再该篇论文中选择了三种矩形特征(Rectangle features )。

经典计算机视觉论文笔记——DeepFace\DeepID\DeepID2\DeepID3\FaceNet\VGGFace汇总

1. DeepFace         最早将深度学习用于人脸验证的开创性工作。Facebook AI实验室出品。动用了百万级的大规模数据库。典型的识别信号提特征+验证信号refine的两步走,对De...

各类识别、深度学习 开源代码及文献梳理

Deep Residual Networks Deep Residual Learning for Image Recognition  https://github.com/KaimingH...

人脸识别——FaceBook的DeepFace、Google的FaceNet、DeepID

DeepFace--Facebook的人脸识别 版权声明:本文为博主原创文章,未经博主允许不得转载。 目录(?)[+] 连续看了DeepI...

经典计算机视觉论文笔记——《ImageNet Classification with Deep Convolutional Neural Networks》

这是CNN复兴的开创之作,个人认为比Hinton老爷子Science上那篇具有更重要的实际意义。有人问CNN怎么调参,其实大部分的答案这篇论文里都能找到。深度CNN最佳启蒙之作,没有之一。 技术概括...

数据库错误823解决办法

错误823解决办法  一、SQL-Server附加数据库时失败。1、异常情况:服务器在正常运行的情况下突然断电,导致数据库文件损坏,具体表现是:数据库名后面有“(置疑)”字样。2、异常分析:关于823...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)