关闭

hdu 1724 Ellipse(simpson求积分)

标签: ACM积分数学
809人阅读 评论(0) 收藏 举报
分类:

Ellipse

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1013    Accepted Submission(s): 363


Problem Description
Math is important!! Many students failed in 2+2’s mathematical test, so let's AC this problem to mourn for our lost youth..
Look this sample picture:



A ellipses in the plane and center in point O. the L,R lines will be vertical through the X-axis. The problem is calculating the blue intersection area. But calculating the intersection area is dull, so I have turn to you, a talent of programmer. Your task is tell me the result of calculations.(defined PI=3.14159265 , The area of an ellipse A=PI*a*b )
 

Input
Input may contain multiple test cases. The first line is a positive integer N, denoting the number of test cases below. One case One line. The line will consist of a pair of integers a and b, denoting the ellipse equation , A pair of integers l and r, mean the L is (l, 0) and R is (r, 0). (-a <= l <= r <= a).
 

Output
For each case, output one line containing a float, the area of the intersection, accurate to three decimals after the decimal point.
 

Sample Input
2 2 1 -2 2 2 1 0 2
 

Sample Output
6.283 3.142
 

Author
威士忌
 

Source

题目:求阴影面积

题解:simpson求积分,下面是公式,一般用第一条,注意精度就行了


#include<stdio.h>
#include<math.h>
#define EPS 1e-6
double a,b;
double f(double x)
{
    return b*sqrt(1.0-x*x/(a*a));
}
double simpson(double l,double r)
{
    double mid=l+(r-l)/2.0;
    return (r-l)*(f(l)+4.0*f(mid)+f(r))/6.0;
}
double solve(double l,double r,double eps)
{
    double mid=l+(r-l)/2.0;
    if(fabs(simpson(l,r)-simpson(l,mid)-simpson(mid,r))<eps) return simpson(l,r);
    else return solve(l,mid,eps/2)+solve(mid,r,eps/2);
}
int main()
{
    int t;
    double l,r;

    //freopen("t.txt","r",stdin);
    scanf("%d",&t);
    while(t--)
    {
        scanf("%lf%lf%lf%lf",&a,&b,&l,&r);
        printf("%.3lf\n",2*solve(l,r,EPS));
    }

    return 0;
}


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:123065次
    • 积分:3367
    • 等级:
    • 排名:第9962名
    • 原创:223篇
    • 转载:13篇
    • 译文:0篇
    • 评论:5条
    最新评论