统计相关系数(1)——Pearson(皮尔逊)相关系数及MATLAB实现

转载 2013年12月03日 21:15:43

统计相关系数简介

 

 

由于使用的统计相关系数比较频繁,所以这里就利用几篇文章简单介绍一下这些系数。

 

相关系数:考察两个事物(在数据里我们称之为变量)之间的相关程度。

 

如果有两个变量:X、Y,最终计算出的相关系数的含义可以有如下理解:

(1)、当相关系数为0时,X和Y两变量无关系。

(2)、当X的值增大(减小),Y值增大(减小),两个变量为正相关,相关系数在0.00与1.00之间。

(3)、当X的值增大(减小),Y值减小(增大),两个变量为负相关,相关系数在-1.00与0.00之间。

 

相关系数的绝对值越大,相关性越强,相关系数越接近于1或-1,相关度越强,相关系数越接近于0,相关度越弱。

通常情况下通过以下取值范围判断变量的相关强度:
相关系数     0.8-1.0     极强相关
                 0.6-0.8     强相关
                 0.4-0.6     中等程度相关
                 0.2-0.4     弱相关
                 0.0-0.2     极弱相关或无相关

 

 

Pearson(皮尔逊)相关系数

 

 

1、简介

 

皮尔逊相关也称为积差相关(或积矩相关)是英国统计学家皮尔逊于20世纪提出的一种计算直线相关的方法。

假设有两个变量X、Y,那么两变量间的皮尔逊相关系数可通过以下公式计算:

公式一:

皮尔逊相关系数计算公式

公式二:

皮尔逊相关系数计算公式

公式三:

皮尔逊相关系数计算公式

公式四:

皮尔逊相关系数计算公式

以上列出的四个公式等价,其中E是数学期望,cov表示协方差,N表示变量取值的个数。

 

 

2、适用范围

 

当两个变量的标准差都不为零时,相关系数才有定义,皮尔逊相关系数适用于:

(1)、两个变量之间是线性关系,都是连续数据。

(2)、两个变量的总体是正态分布,或接近正态的单峰分布。

(3)、两个变量的观测值是成对的,每对观测值之间相互独立。

 

 

3、Matlab实现

 

皮尔逊相关系数的Matlab实现(依据公式四实现):

  1. function coeff = myPearson(X , Y)  
  2. % 本函数实现了皮尔逊相关系数的计算操作  
  3. %  
  4. % 输入:  
  5. %   X:输入的数值序列  
  6. %   Y:输入的数值序列  
  7. %  
  8. % 输出:  
  9. %   coeff:两个输入数值序列X,Y的相关系数  
  10. %  
  11.   
  12.   
  13. if length(X) ~= length(Y)  
  14.     error('两个数值数列的维数不相等');  
  15.     return;  
  16. end  
  17.   
  18. fenzi = sum(X .* Y) - (sum(X) * sum(Y)) / length(X);  
  19. fenmu = sqrt((sum(X .^2) - sum(X)^2 / length(X)) * (sum(Y .^2) - sum(Y)^2 / length(X)));  
  20. coeff = fenzi / fenmu;  
  21.   
  22. end %函数myPearson结束  

 

也可以使用Matlab中已有的函数计算皮尔逊相关系数:

  1. coeff = corr(X , Y);  

 

 

4、参考内容

 

http://zh.wikipedia.org/zh-cn/%E7%9B%B8%E5%85%B3

对pearson相关系数以及协方差矩阵的理解

之前一直从公式中理解,今天看到这个回答,用两个向量夹角余弦来理解感觉发现了新世界 https://segmentfault.com/q/1010000000094674 其二, 按照大学的线性数...
  • Tanya_girl
  • Tanya_girl
  • 2016年12月19日 21:45
  • 1217

Pearson(皮尔逊)相关系数及MATLAB实现

由于使用的统计相关系数比较频繁,所以这里就利用几篇文章简单介绍一下这些系数。   相关系数:考察两个事物(在数据里我们称之为变量)之间的相关程度。   如果有两个变量:X、Y,最终计算出的相关...
  • aabbcc456aa
  • aabbcc456aa
  • 2014年03月10日 21:05
  • 1246

Machine Learning on Spark——第四节 统计基础(二)

作者:周志湖 微信号:zhouzhihubeyond本节主要内容 Correlation 相关性分析 分层采样(Stratified sampling) 随机数据生成(Random data gen...
  • lovehuangjiaju
  • lovehuangjiaju
  • 2015年09月14日 22:43
  • 5122

Pearson相关系数与推荐系统

  • dbsyiae
  • dbsyiae
  • 2009年11月19日 10:42
  • 1596

皮尔逊相关系数(Pearson Correlation Coefficient)理解

转自:http://segmentfault.com/q/1010000000094674 皮尔逊相关系数理解有两个角度 其一, 按照高中数学水平来理解, 它很简单, 可以看做将两组数据首先做Z分数处...
  • memory513773348
  • memory513773348
  • 2013年11月27日 22:56
  • 2639

统计学三大相关系数之皮尔森(pearson)相关系数

最早接触pearson相关系数时,是和同学一起搞数学建模,当时也是需要一种方法评价两组数据之间的相关性,于是找到了皮尔森(pearson)相关系数和斯皮尔曼(spearman)相关系数。其实,还有一种...
  • AlexMerer
  • AlexMerer
  • 2017年07月10日 08:58
  • 2695

相关性检验之Pearson系数及python实现

皮尔森相关系数是用来反应俩变量之间相似程度的统计量,在机器学习中可以用来计算特征与类别间的相似度,即可判断所提取到的特征和类别是正相关、负相关还是没有相关程度。...
  • xzfreewind
  • xzfreewind
  • 2017年06月21日 16:59
  • 6616

Pearson相关系数公式的四种形式及Python代码实现

两个变量之间的皮尔逊相关系数定义为两个变量之间的协方差和标准差的商。第一种形式(也就是定义的形式):第二种形式:第三种形式:第四种形式:(其中,E为数学期望或均值,N为数据的数目,E{ [X-E(X)...
  • Zhangjunjie789
  • Zhangjunjie789
  • 2016年06月22日 22:18
  • 6402

皮尔逊积矩相关系数的学习

做相似度计算的时候经常会用到皮尔逊相关系数(Pearson Correlation Coefficient),那么应该如何理解该系数?其数学本质、含义是什么? 皮尔逊相关系数理解有两个角度 ...
  • Tony_Wong
  • Tony_Wong
  • 2014年03月23日 16:05
  • 1097

Spearman秩相关系数和Pearson皮尔森相关系数

1、Pearson皮尔森相关系数皮尔森相关系数也叫皮尔森积差相关系数,用来反映两个变量之间相似程度的统计量。或者说用来表示两个向量的相似度。皮尔森相关系数计算公式如下:  分子是协方差,分母两个向量的...
  • u011089523
  • u011089523
  • 2016年11月03日 17:09
  • 1010
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:统计相关系数(1)——Pearson(皮尔逊)相关系数及MATLAB实现
举报原因:
原因补充:

(最多只允许输入30个字)