关闭

【树形动规】HDU 5834 Magic boy Bi Luo with his excited tree

标签: 题解HDU动态规划树形DP
144人阅读 评论(0) 收藏 举报
分类:

题目链接:

  http://acm.hdu.edu.cn/showproblem.php?pid=5834

题目大意:

  一棵N个点的有根树,每个节点有价值ci,每条树边有费用di,节点的值只能取一次,边权每次经过都要扣,问从每一个节点开始走最大能获得的价值。

题目思路:

  【树形动态规划】

  首先用dfs求出从根1往下走的:节点u往下走最后回到节点u的最大值g[u],节点u往下走最后不回到u的最优值和次优值f[0][u],f[1][u]

  接着考虑一个节点u,除了以上的情况还有可能是往它的父亲方向走,这里就分两种,一种是走父亲那边再回来走自己的子树,还有一种是走自己的子树再回来走父亲那边

  (肯定最后都不会特意回到u,因为边权>0,回到自己不会更优)而这些状态都可以通过dfs里求得f和g推出。

  具体推法我已写在代码注释中,希望没有写错。。




//
//by coolxxx
//#include<bits/stdc++.h>
#include<iostream>
#include<algorithm>
#include<string>
#include<iomanip>
#include<map>
#include<stack>
#include<queue>
#include<set>
#include<bitset>
#include<memory.h>
#include<time.h>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
//#include<stdbool.h>
#include<math.h>
#define min(a,b) ((a)<(b)?(a):(b))
#define max(a,b) ((a)>(b)?(a):(b))
#define abs(a) ((a)>0?(a):(-(a)))
#define lowbit(a) (a&(-a))
#define sqr(a) ((a)*(a))
#define swap(a,b) ((a)^=(b),(b)^=(a),(a)^=(b))
#define mem(a,b) memset(a,b,sizeof(a))
#define eps (1e-8)
#define J 10
#define mod 1000000007
#define MAX 0x7f7f7f7f
#define PI 3.14159265358979323
#define N 100004
using namespace std;
typedef long long LL;
int cas,cass;
int n,m,lll,ans;
int w[N],last[N],g[N];
int f[2][N],from[3][N],h[3][N];
struct xxx
{
	int next,to,d;
}a[N+N];
bool mark[N];
void add(int x,int y,int z)
{
	a[++lll].d=z;
	a[lll].to=y;
	a[lll].next=last[x];
	last[x]=lll;
}
void dfs(int u,int fa)//从根开始往下走的解
{
	int i,j,v;
	g[u]=w[u];
	for(i=last[u];i;i=a[i].next)
	{
		v=a[i].to;
		if(v==fa)continue;
		dfs(v,u);
		g[u]+=max(0,g[v]-a[i].d-a[i].d);//g[u]统计最后回到u的最优解
	}
	for(i=last[u];i;i=a[i].next)
	{
		v=a[i].to;
		if(v==fa || f[0][v]<=a[i].d)continue;
		j=g[u]-max(0,g[v]-a[i].d-a[i].d)+max(0,f[0][v]-a[i].d);
		//枚举从u哪一条走下去不回,如果g[u]计算时有走v则要扣掉,再加上选择走v不回的最优值
		if(f[0][u]<=j)//不回u的最优值
		{
			f[1][u]=f[0][u],from[1][u]=from[0][u];
			f[0][u]=j,from[0][u]=i;
		}
		else if(f[1][u]<j)//不回u的次优值
			f[1][u]=j,from[1][u]=i;
	}
	f[0][u]=max(f[0][u],g[u]);
	f[1][u]=max(f[1][u],g[u]);
}
void work(int u,int fa)//计算最后答案
{
	int i,j,v;
	for(i=last[u];i;i=a[i].next)
	{
		v=a[i].to;
		if(v==fa)return;
		j=max(0,g[v]-a[i].d-a[i].d);//u走到v再走回来是否更优
		h[0][v]=f[0][v]+max(0,g[u]-j-a[i].d-a[i].d);//g[u]扣除掉走v子树的值,先从v向上走到u再从u走回来,然后走回v的最优值
		h[1][v]=f[1][v]+max(0,g[u]-j-a[i].d-a[i].d);//次优值
		from[2][v]=i;
		if(g[v]>=a[i].d+a[i].d)//这种情况下前面多扣了一次边权
		{
			if(from[0][u]!=i)h[2][v]=h[0][u]+a[i].d;//v往上走回头再往下走不回头
			else h[2][v]=h[1][u]+a[i].d;//当前是最优值,选另一条走次优值
		}
		else//前面少扣了一次边权
		{
			if(from[0][u]!=i)h[2][v]=h[0][u]+g[v]-a[i].d;//v往下走回头再往上走不回头
			else h[2][v]=h[1][u]+g[v]-a[i].d;
		}
		if(h[2][v]>h[1][v])swap(h[2][v],h[1][v]),swap(from[2][v],from[1][v]);
		if(h[1][v]>h[0][v])swap(h[1][v],h[0][v]),swap(from[1][v],from[0][v]);
		g[v]+=max(0,g[u]-j-a[i].d-a[i].d);//更新答案
		work(v,u);
	}
}
int main()
{
	#ifndef ONLINE_JUDGE
//	freopen("1.txt","r",stdin);
//	freopen("2.txt","w",stdout);
	#endif
	int i,j,k;
	int x,y,z;
//	for(scanf("%d",&cass);cass;cass--)
	for(scanf("%d",&cas),cass=1;cass<=cas;cass++)
//	while(~scanf("%s",s+1))
//	while(~scanf("%d",&n))
	{
		mem(f,0);mem(from,0);mem(last,0);lll=0;
		printf("Case #%d:\n",cass);
		scanf("%d",&n);
		for(i=1;i<=n;i++)
			scanf("%d",&w[i]);
		for(i=1;i<n;i++)
		{
			scanf("%d%d%d",&x,&y,&z);
			add(x,y,z);
			add(y,x,z);
		}
		dfs(1,0);
		h[0][1]=f[0][1],h[1][1]=f[1][1];
		work(1,0);
		for(i=1;i<=n;i++)
			printf("%d\n",h[0][i]);
	}
	return 0;
}
/*
//

//
*/


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:60537次
    • 积分:2311
    • 等级:
    • 排名:第17789名
    • 原创:242篇
    • 转载:2篇
    • 译文:0篇
    • 评论:16条
    文章分类
    最新评论