1.1

原创 2013年12月03日 19:42:00
一、问题

有两个变量a,b,不用“if”,“? :”,switch或者其它判断语句,找出两个数中间比较大的

二、解决方案

[java] view plaincopy
  1. /* 
  2. 方法1:取平均值法 
  3. 大的为 ((a+b)+abs(a-b)) / 2 
  4. 小的为 (a+b - abs(a-b)) / 2 
  5. */  
  6. int fMax1(int a, int b)  
  7. {      
  8.     return  ((a+b)+abs(a-b)) / 2;   
  9. }  
[java] view plaincopy
  1. /* 
  2. 方法2:不使用abs() 
  3. a<b时,a/b=0,所以前面为b*(b/a),后面为b/a,那么结果就是b 
  4. a=b时,a/b=1,所以前面为a+b=2a,后面为2,那么结果就是a 
  5. a>b时,b/a=0,所以前面为a*(a/b),后面为a/b,那么结果就是a 
  6. */  
  7. int fMax2(int a, int b)  
  8. {  
  9.     int larger = (a*(a/b) + b*(b/a))/(a/b + b/a);  
  10.     //long smaller = (b*(a/b) + a*(b/a))/(a/b + b/a);  
  11.     return larger;  
  12. }  
[java] view plaincopy
  1. /* 
  2. 方法3:如果取 a/b 余数不为0,则说明a>b 
  3. 这是个好方法,不过题目说了,不能用“? :” 
  4. */  
  5. int fMax3(int a, int b)  
  6. {  
  7.     return  (a / b) ? a : b;  
  8. }  
[java] view plaincopy
  1. /* 
  2. 方法4:移位法 
  3. 当b<0的时候以补码存,故最高位是1 
  4. 所以右移31位b>>31其实就是最高位的值 
  5. b>=0时候最高位为0 
  6. 所以b跟1与时候为b,a=a-(a-b)=b 
  7. b跟1作与运算时候为0,相当于a=a-0=a  
  8. */  
  9. int fMax4(int a, int b)  
  10. {  
  11.     b = a - b;  
  12.     a -= b & (b>>31);                     
  13.     return a;  
  14. }  
  15. //移位法  
  16. int fMax5(int a,int b)  
  17. {  
  18.     int  c[2] = {a, b};  
  19.     int z = a - b;  
  20.     z = (z>>31)&1;  
  21.     return c[z];  
  22. }  
  23. //移位法  
  24. int  fMax6(int a, int b)  
  25. {  
  26.     int flag = ((a - b) >> 31)&1;  
  27.     return a - (a - b) * flag;  
  28. }  
[java] view plaincopy
  1. //我想这个应该是最牛B的一个  
  2. int fMax7(int a, int b)  
  3. {  
  4.     int pair[2] = {a, b};   
  5.     return pair[a < b];  
  6. }  
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

相关文章推荐

XML命名空间深度解析 —— XML1.0和XML1.1区别

在博客http://blog.csdn.net/ftomorrow/article/details/27102769中对XML命名空间进行了简单介绍,...

HTTP 1.1状态代码及其含义

常见的HTTP 1.1状态代码以及它们对应的状态信息和含义.     应当谨慎地使用那些只有HTTP 1.1支持的状态代码,因为许多浏览器还只能够支持HTTP 1.0.如果你使用了HTTP 1.1...

1.1Nginx在Windows平台的配置:

1.1.1 Nginx的概述: 什么是Nginx:   为什么使用Nginx: 背景: 互联网飞速发展的今天,大用户量高并发已经成为互联网的主体.怎样能让一个网站能够承载几万个或几十万个用户...

1.1、uCOS-II概述及文件结构

概述 简介 1992年由Jean J.Labrosse开发μC/OS的第一版,现在的μC/OS-Ⅱ是其第二版。μC/OS-Ⅱ的绝大部分是用C语言编写的,少量与硬件关系极为密切的部分只能由汇编语言...

原始编译全志R16的androidM的步骤(分色排版)V1.1

原始编译全志R16的androidM的步骤     深圳市城茗国际有限公司 2017/7/17 14:03 联系人:文元波18680688682/0755-88306303-840 反馈邮箱:redi...
  • wb4916
  • wb4916
  • 2017年07月17日 14:28
  • 958

计算机程序设计艺术第一卷1.1算法

最近抽时间看高德纳老爷爷的计算机程序设计艺术(英文版)。为了督促自己,也为了在读书时留下些记录,在此写下这些笔记。 在开始正文之前,高爷爷首先给出了一个读书流程图,非常醒目的、直接了当的突出了算法的...

从头认识Spring-1.1 什么是依赖注入?为什么需要依赖注入?

这一章节我们来讨论一下什么是依赖注入?为什么需要依赖注入?1.什么是依赖注入?笔者理解的是:对象的生成不再是通过显示的new,而且到spring容器里面取,对象的创建是使用注入这种形式2.为什么需要依...

httpclient4.5 入门教程 1.1执行请求<二>

本文转载自http://blog.csdn.net/u011179993/article/details/47147909 更多HttpClient4.5中文教程请查看:点击打开链接=========...
  • JavaMoo
  • JavaMoo
  • 2017年07月28日 19:06
  • 65

ARM架构内核启动分析-head.S(1.1、vmlinux.lds 链接脚本分析)

ARM架构内核启动分析 一、start kernel之前 首先需要明确的是,内核镜像在被解压之后执行,是执行哪段代码,这是个重要的问题,平时在编译生成应用程序或内核模块时,我们无需考虑链接的具体细节,...

1.1 并查集 & 最小生成树

1.1.1 并查集用以表示某些关系,包括在同一集合,在对立集合等。 **Eg1.洛谷1196 银河英雄传说** 加权并查集。不仅要知道两点有没有关系,还要具体知道两点之间的点数量。因此需要si...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:1.1
举报原因:
原因补充:

(最多只允许输入30个字)