关闭

桶中取黑白球(百度2014面试,编程之美)

1173人阅读 评论(0) 收藏 举报
分类:

《编程之美》4.6

问题:

有一个桶,里面有白球和黑球各100个,规则如下:

  1. 每次随机从桶中取出两个球
  2. 如果是两个同色的球,就再放入一个黑球
  3. 如果是两个异色的球,就再放入一个白球

问:最后桶中只剩下一个黑球的概率是多少?

 

解法:

刚拿到这个问题,我的第一个想法就是用程序来计算各种情形出现的概率,然后再用递归求出最终的结果,不过可能因为程序存在一个bug,结果一直得到的是一个错误的结果

下面列出作者给出的正确解法,看来思维僵化实在太可怕了!

 

解法一:

我们可一个用一个set(黑球数量,白球数量)来表示桶中的黑球和白球的个数。从桶中取出球后,只可能是下列三种操作:

  1. 取出的是两个黑球,则放回一个黑球:(-2, 0) + (1, 0) = (-1, 0)
  1. 取出的是两个白球,则放回一个黑球:(0, -2) + (1, 0) = (1, -2)
  2. 取出的是一黑一白,则放回一个白球:(-1, -1) + (0, 1) = (-1, 0)

根据上面的规则,我们可以发现:白球的数量变化情况只能是不变或者-2,也就是说,如果是100个白球,白球永远不可能是1个的情况,那么问题的解法就很简单了,就是只剩下黑球的概率为100%

 

解法二:

两个相同的球异或等于0,两个不同的球异或等于1

将黑球赋为0 白球赋为1.

可以作这样的抽象:每次捞出两个数字做一次异或操作,并将所得的结果丢回桶中。

就有可能是0 xor 1 xor 1 ……之类的情况,又因为异或满足结合律,上式可变为:

(0 xor 0 ……xor 0) xor (1 xor 1 ……xor 1)两边都是100个,结果就是0

所以只能是黑球

扩展问题:

1.如果桶中的球分别为99个,那么结果会怎样?

根据异或的结果 最后的球一定是白球

2.如果黑白球的数量不定,结果又会怎样?

a个白球 b个黑球

a为奇数时异或为1,a为偶数时异或为1

b无论奇偶都是0

所以当白球为奇数时,最后一定取出白球,白球为偶数时,最后一定取出黑球(有脑残此时提问:如果全部都是白球怎么办?答案是题目条件拿出2个白球会放入1个黑球的亲。。)

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:136067次
    • 积分:2778
    • 等级:
    • 排名:第12913名
    • 原创:134篇
    • 转载:106篇
    • 译文:1篇
    • 评论:6条