题意:
给定 N 堆石子,每堆石子一开始只有 1 个。小 Z 和他的小伙伴轮流操作, 小 Z 先行操作。操作可以将任意两堆石子合并成为一堆,当谁不再能操作的
时候,谁就输掉了。 不过,当一堆石子堆的太高时可能发生危险,因此小 Z 和他的小伙伴规定,任何时刻任意一 堆石子的数量不能超过 m。即假如现在有两堆石子分别有a 个和 b 个,而且 a+b>m,那么这 两堆石子就不能合成一堆。 小 Z 和他的小伙伴都是很聪明的,所以他们总是会选择对自己最有利的策略。现在小 Z 想要知道,在这种情况下,对于一个给定的 n 和 m,到底是谁能够获得胜利呢?
n,m<=1000000000, T<=100
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<iostream>
using namespace std;
int n,m,t,ans;
int main()
{
int z;scanf("%d",&z);
while(z--)
{
scanf("%d%d",&n,&m);
t=n/m;
if(n%m) t++;
ans=n-t;
if(ans%2) printf("0\n");
else printf("1\n");
}
return 0;
}
题解:
感觉一定最后是m,m,…,n%m。试了试样例发现很对然后就A了><
证明:
无论先手后手,只要想就一定能造出m,m,…,n%m。这样的话此时胜利的人必定会构造这种局面。
1、先手想构造
先手1+1=2
如果此时后手1+2=3,则先手1+3=4
如果此时后手1+1=2,则先手2+2=4
就是说先手可以构造自己放完后只有一堆非1且为偶数
同理后手能构造自己放完后只有一堆非1且为奇数
当m为奇数
{
先手想构造
当先手造出了m-1后,如果后手让m-1加一变成m,则造出一个m同时回到先手行动状态,循环上面过程。
如果后手造一个2,先手补满m。无论后手让1+1=2还是让2+1=3,先手都能把造一堆4,其他都为1,循环上面过程。
后手想构造
后手会把m造出来,此时又轮到先手,循环上面过程。
}
当m为偶数
{
先手想构造
先手会直接把m造出来。后手会让1+1=2。此时等价于造出了一堆m,转化为后手想构造。
后手想构造
后手造出m-1后,如果先手把它补成m,则等价于造出一堆m,转化为先手想构造。如果先手让1+1=2,则后手补出m。此时无论先手让2+1=3还是让1+1=2,后手都把它变为4。现在后手就能构造那一堆是偶数的了,等价于造出一堆m后,变成先手想构造。
发现这两种是交替的
}
构造方法只有在m<=3的情况下不成立,这种情况就易于分析了吧。。