codeforces215 E. Periodical Numbers(数位dp)

原创 2015年07月07日 19:16:45

E. Periodical Numbers
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

A non-empty string s is called binary, if it consists only of characters “0” and “1”. Let’s number the characters of binary string s from 1 to the string’s length and let’s denote the i-th character in string s as si.

Binary string s with length n is periodical, if there is an integer 1 ≤ k < n such that:

k is a divisor of number n
for all 1 ≤ i ≤ n - k, the following condition fulfills: si = si + k 

For example, binary strings “101010” and “11” are periodical and “10” and “10010” are not.

A positive integer x is periodical, if its binary representation (without leading zeroes) is a periodic string.

Your task is to calculate, how many periodic numbers are in the interval from l to r (both ends are included).
Input

The single input line contains two integers l and r (1lr1018). The numbers are separated by a space.

Please, do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use the cin, cout streams or the %I64d specifier.
Output

Print a single integer, showing how many periodic numbers are in the interval from l to r (both ends are included).
Sample test(s)
Input

1 10

Output

3

Input

25 38

Output

2

Note

In the first sample periodic numbers are 3, 7 and 10.

In the second sample periodic numbers are 31 and 36.

思路:假如说现在处理的是1-x,那么枚举所有可能的长度,然后枚举k 的大小,对于小于极限长度的长度,那么直接可以用1<<(j-1)算出,因为假如现在枚举的k为j,相当于处理最高位一样,剩下的可以随便变化;对于极限值,用cal计算

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int maxn=70;
int dig[maxn];
LL x,y;
LL dp[maxn];
LL cal(int len,int k,LL x)
{
    LL a=0,b=0;
    for(int i=0;i<k;i++)
        a+=(dig[len-i]<<(k-1-i));
    b=a;
    for(int i=1;i<len/k;i++)
        b<<=k,b+=a;
    return a-(1<<(k-1))+1/*此处加1是因为全0的原因*/-(b>x);
}
LL solve(LL x)
{
    int len=0;
    LL n=x;
    while(x)
    {
        dig[++len]=x%2;
        x>>=1;
    }
    LL ans=0;
    for(int i=2;i<=len;i++)
    {
        memset(dp,0,sizeof(dp));
        for(int j=1;j<i;j++)
        {
            if(i%j)continue;
            if(i<len)dp[j]=(1<<(j-1));
            else dp[j]=cal(len,j,n);
            for(int k=1;k<j;k++)
                if(j%k==0)dp[j]-=dp[k];
            ans+=dp[j];
        }
    }
    return ans;
}
int main()
{
    scanf("%I64d%I64d",&x,&y);
    printf("%I64d\n",solve(y)-solve(x-1));
    return 0;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。

CF_225B _Well-known Numbers

Numbers k-bonacci (k is integer, k > 1) are a generalization of Fibonacci numbers and are determined...
  • rootial
  • rootial
  • 2014年08月26日 17:41
  • 287

CodeForces - 225B题解

知识:无 题目:CodeForces - 225B链接 Numbers k-bonacci (k is integer, k > 1) are a generalization of Fibon...
  • Krone_
  • Krone_
  • 2017年08月26日 17:24
  • 73

codeforces 215E 数位DP

链接:http://www.codeforces.com/problemset/problem/215/E 题意:问你 l  r之间有多少的数是周期数,周期数的定义为:这个数的二进制形式是以k为周期...
  • haha593572013
  • haha593572013
  • 2012年08月24日 22:49
  • 1126

CodeForces 215E Periodical Numbers 数位DP

题意:给你一个区间[l,r],求这个区间内满足条件的数,条件是:这个数的二进制表示时,dig[i] = dig[i+k] , (0 思路:考虑[0,x]这个区间,若x的位数为len,当数的长度 i 为...
  • wangjie_wang
  • wangjie_wang
  • 2013年08月29日 19:04
  • 503

codeforces #215 DIV1

A题读透题意就是查询区间x,y,z的个数,如果区间长度不超过2或者x,y,z个数的最大值与最小值的差不超过了就是YES,否则就是NO因为如果最大的差值小于等于2的话,无论如何都可以构造出一个序列使得每...
  • yanglei040
  • yanglei040
  • 2013年11月27日 10:25
  • 566

codeforces215E(数位DP,规律水过)

地址:http://codeforces.com/contest/215/problem/E E. Periodical Numbers time limit pe...
  • gaokecs1
  • gaokecs1
  • 2014年02月07日 18:58
  • 744

HDOJ 2070 Fibbonacci Number

Fibbonacci Number Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other...
  • shyazhut
  • shyazhut
  • 2016年03月26日 21:35
  • 236

java170道面试题汇总+详细解析

声明:有人说, 有些面试题很变态,个人认为其实是因为我们基础不扎实或者没有深入。本篇文章来自一位很资深的前辈对于最近java面试题目所做的总结归纳,有170道题目 ,知识面很广 ,而且这位前辈对于每个...
  • corleone_4ever
  • corleone_4ever
  • 2017年10月15日 10:22
  • 1443

Magic Numbers codeforces 628D 数位dp

Consider the decimal presentation of an integer. Let’s call a number d-magic if digit d appears in d...
  • Littlewhite520
  • Littlewhite520
  • 2017年05月25日 01:08
  • 221

Round Numbers((组合数 + 简单组合数学)||(数位dp))

Round Numbers Time Limit:2000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Submit St...
  • AC_road
  • AC_road
  • 2016年07月20日 13:54
  • 471
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:codeforces215 E. Periodical Numbers(数位dp)
举报原因:
原因补充:

(最多只允许输入30个字)