【第22期】观点:IT 行业加班,到底有没有价值?

hdu - 4511 小明系列故事——女友的考验(AC自动机+DP)

原创 2015年07月08日 14:37:00

小明系列故事——女友的考验

Time Limit: 500/200 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)
Total Submission(s): 910 Accepted Submission(s): 207

Problem Description
  终于放寒假了,小明要和女朋友一起去看电影。这天,女朋友想给小明一个考验,在小明正准备出发的时候,女朋友告诉他,她在电影院等他,小明过来的路线必须满足给定的规则:
  1、假设小明在的位置是1号点,女朋友在的位置是n号点,则他们之间有n-2个点可以走,小明每次走的时候只能走到比当前所在点编号大的位置;
  2、小明来的时候不能按一定的顺序经过某些地方。比如,如果女朋友告诉小明不能经过1 -> 2 -> 3,那么就要求小明来的时候走过的路径不能包含有1 -> 2 -> 3这部分,但是1 -> 3 或者1 -> 2都是可以的,这样的限制路径可能有多条。
  这让小明非常头痛,现在他把问题交给了你。
  特别说明,如果1 2 3这三个点共线,但是小明是直接从1到3然后再从3继续,那么此种情况是不认为小明经过了2这个点的。
  现在,小明即想走最短的路尽快见到女朋友,又不想打破女朋友的规定,你能帮助小明解决这个问题吗?

Input
  输入包含多组样例,每组样例首先包含两个整数n和m,其中n代表有n个点,小明在1号点,女朋友在n号点,m代表小明的女朋友有m个要求;
  接下来n行每行输入2个整数x 和y(x和y均在int范围),代表这n个点的位置(点的编号从1到n);
  再接着是m个要求,每个要求2行,首先一行是一个k,表示这个要求和k个点有关,然后是顺序给出的k个点编号,代表小明不能走k1 -> k2 -> k3 ……-> ki这个顺序的路径;
  n 和 m等于0的时候输入结束。

  [Technical Specification]
  2 <= n <= 50
  1 <= m <= 100
  2 <= k <= 5

Output
  对于每个样例,如果存在满足要求的最短路径,请输出这个最短路径,结果保留两位小数;否则,请输出”Can not be reached!” (引号不用输出)。

Sample Input

3 1
1 1
2 1
3 1
2
1 2

2 1
0 0
1 1
2
1 2

5 3
0 0
5 3
1 2
1 22
5 21
3
1 2 3
2
4 5
2
1 5

0 0

Sample Output

2.00
Can not be reached!
21.65

思路:dp[i][j]表示编号为i的点,在树上的j点的最短距离

#include<iostream>
#include<cstdio>
#include<string>
#include<cstring>
#include<vector>
#include<cmath>
#include<queue>
#include<stack>
#include<map>
#include<set>
#include<algorithm>
using namespace std;
const int maxn=50*50;
const int maxm=55;
const double INF=1e20;
const int SIGMA_SIZE=51;
int N,M;
int path[maxn];
double dis[maxm][maxm];
struct node
{
    double x,y;
}p[maxn];
double dp[maxn][maxn];
struct AC
{
    int ch[maxn][55];
    int val[maxn];
    int fail[maxn];
    int sz;
    void clear(){memset(ch[0],0,sizeof(ch[0]));sz=1;}
    void insert(int *path,int len)
    {
        int u=0;
        for(int i=0;i<len;i++)
        {
            int c=path[i];
            if(!ch[u][c])
            {
                memset(ch[sz],0,sizeof(ch[sz]));
                val[sz]=0;
                ch[u][c]=sz++;
            }
            u=ch[u][c];
        }
        val[u]=1;
    }
    void getfail()
    {
        int u=0;
        queue<int> q;
        fail[0]=0;
        for(int c=1;c<SIGMA_SIZE;c++)
        {
            u=ch[0][c];
            if(u){fail[u]=0;q.push(u);}
        }
        while(!q.empty())
        {
            int r=q.front();q.pop();
            if(val[fail[r]])val[r]=1;
            for(int c=1;c<SIGMA_SIZE;c++)
            {
                u=ch[r][c];
                if(!u){ch[r][c]=ch[fail[r]][c];continue;}
                q.push(u);
                int v=fail[r];
                while(v&&!ch[v][c])v=fail[v];
                fail[u]=ch[v][c];
            }
        }
    }
    void solve()
    {
        for(int i=1;i<=N;i++)
            for(int j=0;j<sz;j++)dp[i][j]=INF;
        dp[1][ch[0][1]]=0;
        for(int i=1;i<N;i++)
        {
            for(int j=0;j<sz;j++)
            {
                if(dp[i][j]<INF)
                {
                    for(int k=i+1;k<=N;k++)
                    {
                        int v=ch[j][k];
                        if(val[v])continue;
                        dp[k][v]=min(dp[k][v],dp[i][j]+dis[i][k]);
                    }
                }
            }
        }
        double ans=INF;
        for(int i=0;i<sz;i++)
            if(dp[N][i]<INF)
                ans=min(ans,dp[N][i]);
        if(ans>=INF)printf("Can not be reached!\n");
        else printf("%.2f\n",ans);
    }
}ac;
double cal(int i,int j)
{
    return sqrt((p[i].x-p[j].x)*(p[i].x-p[j].x)+(p[i].y-p[j].y)*(p[i].y-p[j].y));
}
void process()
{
    memset(dis,0,sizeof(dis));
    for(int i=1;i<=N;i++)
        for(int j=1;j<=N;j++)
            dis[i][j]=dis[j][i]=cal(i,j);
}
int main()
{
    while(scanf("%d%d",&N,&M)!=EOF,N||M)
    {
        ac.clear();
        for(int i=1;i<=N;i++)scanf("%lf%lf",&p[i].x,&p[i].y);
        process();
        for(int i=0;i<M;i++)
        {
            int k;
            scanf("%d",&k);
            for(int j=0;j<k;j++)scanf("%d",&path[j]);
            ac.insert(path,k);
        }
        ac.getfail();
        ac.solve();
    }
    return 0;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。 举报

相关文章推荐

HDU 4511 小明系列故事——女友的考验 (AC自动机+DP)

题意:   终于放寒假了,小明要和女朋友一起去看电影。这天,女朋友想给小明一个考验,在小明正准备出发的时候,女朋友告诉他,她在电影院等他,小明过来的路线必须满足给定的规则:   1、假设小明在的位置...

poj 1625 Censored! 【AC自动机 + DP + 强力大数模版】

1y,还是这个大数模版给力,自己敲了个动态的大数模版结果连加法都算不对。。。 #include&lt;iostream&gt; #include&lt;vector&gt; #include&lt;cstdio&gt; #include&...

程序员升职加薪指南!还缺一个“证”!

CSDN出品,立即查看!

hdu4511 小明系列故事——女友的考验(AC自动机+dp)

hdu4511题目中文题目思路AC自动机好久以前看的了,都要忘了。。。。正好复习以下。 dp[i][j] 表示在i点,状态在j的距离,转移比i大的点k,判断下一个状态ss是否可行,可行则转移到dp[...

AC自动机 + 二维最短路 HDU 4511 小明系列故事――女友的考验

这个题还是比较好想的。 首先将所有不可行方案建立AC自动机,然后跑最短路。 首先将小明放在(sta = 0,pos = 0)处,sta表示AC自动机上点的编号,pos表示坐标点的编号。 根据po...
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)