如何用OpenCV训练自己的分类器

原创 2015年11月21日 09:48:51

最近要做一个性别识别的项目,在人脸检测与五官定位上我采用OPENCV的haartraining进行定位,这里介绍下这两天我学习的如何用opencv训练自己的分类器。在这两天的学习里,我遇到了不少问题,不过我遇到了几个好心的大侠帮我解决了不少问题,特别是无忌,在这里我再次感谢他的帮助.

一、简介

目标检测方法最初由Paul Viola [Viola01]提出,并由Rainer Lienhart [Lienhart02]对这一方法进行了改善。该方法的基本步骤为: 首先,利用样本(大约几百幅样本图片)的 harr 特征进行分类器训练,得到一个级联的boosted分类器。分类器中的”级联”是指最终的分类器是由几个简单分类器级联组成。在图像检测中,被检窗口依次通过每一级分类器, 这样在前面几层的检测中大部分的候选区域就被排除了,全部通过每一级分类器检测的区域即为目标区域。
分类器训练完以后,就可以应用于输入图像中的感兴趣区域的检测。检测到目标区域分类器输出为1,否则输出为0。为了检测整副图像,可以在图像中移动搜索窗口,检测每一个位置来确定可能的目标。 为了搜索不同大小的目标物体,分类器被设计为可以进行尺寸改变,这样比改变待检图像的尺寸大小更为有效。所以,为了在图像中检测未知大小的目标物体,扫描程序通常需要用不同比例大小的搜索窗口对图片进行几次扫描。
目前支持这种分类器的boosting技术有四种: Discrete Adaboost, Real Adaboost, Gentle Adaboost and Logitboost。”boosted” 即指级联分类器的每一层都可以从中选取一个boosting算法(权重投票),并利用基础分类器的自我训练得到。
根据上面的分析,目标检测分为三个步骤:
1、 样本的创建
2、 训练分类器
3、 利用训练好的分类器进行目标检测。

二、样本创建

训练样本分为正例样本和反例样本,其中正例样本是指待检目标样本,反例样本指其它任意图片。

负样本

负样本可以来自于任意的图片,但这些图片不能包含目标特征。负样本由背景描述文件来描述。背景描述文件是一个文本文件,每一行包含了一个负样本图片的文件名(基于描述文件的相对路径)。该文件创建方法如下:
采用Dos命令生成样本描述文件。具体方法是在Dos下的进入你的图片目录,比如我的图片放在D:\face\posdata下,则:
按Ctrl+R打开Windows运行程序,输入cmd打开DOS命令窗口,输入d:回车,再输入cd D:\face\negdata进入图片路径,再次输入dir /b > negdata.dat,则会图片路径下生成一个negdata.dat文件,打开该文件将最后一行的negdata.dat删除,这样就生成了负样本描述文件。dos命令窗口结果如下图:
这里写图片描述这里写图片描述


正样本

对于正样本,通常的做法是先把所有正样本裁切好,并对尺寸做规整(即缩放至指定大小),如上图所示:
由于HaarTraining训练时输入的正样本是vec文件,所以需要使用OpenCV自带的CreateSamples程序(在你所按照的opencv\bin下,如果没有需要编译opencv\apps\HaarTraining\make下的.dsw文件,注意要编译release版的)将准备好的正样本转换为vec文件。转换的步骤如下:

1) 制作一个正样本描述文件,用于描述正样本文件名(包括绝对路径或相对路径),正样本数目以及各正样本在图片中的位置和大小。典型的正样本描述文件如下:

posdata/1(10).bmp 1 1 1 23 23
posdata/1(11).bmp 1 1 1 23 23
posdata/1(12).bmp 1 1 1 23 23

不过你可以把描述文件放在你的posdata路径(即正样本路径)下,这样你就不需要加前面的相对路径了。同样它的生成方式可以用负样本描述文件的生成方法,最后用txt的替换工具将“bmp”全部替换成“bmp 1 1 1 23 23
”就可以了,如果你的样本图片多,用txt替换会导致程序未响应,你可以将内容拷到word下替换,然后再拷回来。bmp后面那五个数字分别表示图片个数,目标的起始位置及其宽高。这样就生成了正样本描述文件posdata.dat。

2) 运行CreateSamples程序。如果直接在VC环境下运行,可以在Project\Settings\Debug属性页的Program arguments栏设置运行参数。下面是一个运行参数示例:

-info D:\face\posdata\posdata.dat -vec D:\face\pos.vec -num 50 -w 20 -h 20

表示有50个样本,样本宽20,高20,正样本描述文件为posdata.dat,结果输出到pos.vec。
或者在dos下输入:
“D:\Program Files\OpenCV\bin\createsamples.exe” -info “posdata\posdata.dat” -vec data\pos.vec -num 50 -w 20 -h 20
运行完了会d:\face\data下生成一个*.vec的文件。该文件包含正样本数目,宽高以及所有样本图像数据。结果入下图:
这里写图片描述
Createsamples程序的命令行参数:
命令行参数:
-vec
训练好的正样本的输出文件名。

-img<image_file_name>

源目标图片(例如:一个公司图标)

-bg<background_file_name>

背景描述文件。

-num<number_of_samples>

要产生的正样本的数量,和正样本图片数目相同。

-bgcolor<background_color>

背景色(假定当前图片为灰度图)。背景色制定了透明色。对于压缩图片,颜色方差量由bgthresh参数来指定。则在bgcolor-bgthresh和bgcolor+bgthresh中间的像素被认为是透明的。

-bgthresh<background_color_threshold>
-inv

如果指定,颜色会反色

-randinv

如果指定,颜色会任意反色

-maxidev<max_intensity_deviation>

背景色最大的偏离度。

-maxangel<max_x_rotation_angle>
-maxangle<max_y_rotation_angle>,
-maxzangle<max_x_rotation_angle>

最大旋转角度,以弧度为单位。

show

如果指定,每个样本会被显示出来,按下”esc”会关闭这一开关,即不显示样本图片,而创建过程继续。这是个有用的debug选项。

-w<sample_width>

输出样本的宽度(以像素为单位)

-h<sample_height>

输出样本的高度,以像素为单位。
到此第一步样本训练就完成了。恭喜你,你已经学会训练分类器的五成功力了,我自己学这个的时候花了我一天的时间,估计你几分钟就学会了吧。

三、训练分类器

样本创建之后,接下来要训练分类器,这个过程是由haartraining程序来实现的。该程序源码由OpenCV自带,且可执行程序在OpenCV安装目录的bin目录下。
Haartraining的命令行参数如下:
-data<dir_name>
存放训练好的分类器的路径名。
-vec<vec_file_name>-
正样本文件名(由trainingssamples程序或者由其他的方法创建的)
-bg<background_file_name>
背景描述文件。

-npos<number_of_positive_samples>,
-nneg<number_of_negative_samples>

用来训练每一个分类器阶段的正/负样本。合理的值是:nPos = 7000;nNeg = 3000

-nstages<number_of_stages>

训练的阶段数。

-nsplits<number_of_splits>

决定用于阶段分类器的弱分类器。如果1,则一个简单的stump classifier被使用。如果是2或者更多,则带有number_of_splits个内部节点的CART分类器被使用。

-mem<memory_in_MB>

预先计算的以MB为单位的可用内存。内存越大则训练的速度越快。

-sym(default
-nonsym

指定训练的目标对象是否垂直对称。垂直对称提高目标的训练速度。例如,正面部是垂直对称的。

-minhitrate《min_hit_rate》

每个阶段分类器需要的最小的命中率。总的命中率为min_hit_rate的number_of_stages次方。

-maxfalsealarm《max_false_alarm_rate>

每个阶段分类器的最大错误报警率。总的错误警告率为max_false_alarm_rate的number_of_stages次方。

-weighttrimming《weight_trimming>

指定是否使用权修正和使用多大的权修正。一个基本的选择是0.9

-eqw
-mode(basic(default)|core|all

选择用来训练的haar特征集的种类。basic仅仅使用垂直特征。all使用垂直和45度角旋转特征。

-w<sample_width>
-h<sample_height>

训练样本的尺寸,(以像素为单位)。必须和训练样本创建的尺寸相同。
一个训练分类器的例子:
“D:\Program Files\OpenCV\bin\haartraining.exe” -data data\cascade -vec data\pos.vec -bg negdata\negdata.dat -npos 49 -nneg 49 -mem 200 -mode ALL -w 20 -h 20
注意:-mode后面的ALL必须全部大写!
训练结束后,会在目录data下生成一些子目录,即为训练好的分类器。
训练结果如下:
这里写图片描述

恭喜你,你已经学会训练分类器的九成功力了。
如果出现:训练停留在一个分类器长达几小时没有相应,问题出现在取负样本的那个函数 icvGetHaarTrainingDataFromBG中(另见我的博客http://blog.sina.com.cn/s/blog_75e063c10100za53.html中对于icvGetHaarTrainingDataFromBG的分析);只有当之前的强分类器对负样本集内的样本全部分类正确时才会出现死循环,因为只要有一个样本会被错分为正样本,那么通过count次扫描整个负样本集就能得到count个负样本,当然这count个负样本实际上就是一个负样本的count个拷贝。为避免这种情况,负样本集中的样本数需要足够多 。
不过此时的分类器已经完全额、可以使用,因为它的误检率已经很低,从实用性上时没有任何问题的。所以我们可以通过设置-nstages 这个参数来限制分类器级数,适当时候停止并生成xml文件。
这里写图片描述

另一个方法就是利用haarconv的程序,才将分类器的text文件转换为xml文件。
四:利用训练好的分类器进行目标检测。
这一步需要用到performance.exe,该程序源码由OpenCV自带,且可执行程序在OpenCV安装目录的bin目录下。
performance.exe -data data/cascade -info posdata/test.dat -w 20 -h 20 -rs 30
performance的命令行参数如下:

Usage: ./performance
-data <classifier_directory_name>
-info <collection_file_name>
[-maxSizeDiff <max_size_difference = 1.500000>]
[-maxPosDiff <max_position_difference = 0.300000>]
[-sf <scale_factor = 1.200000>]
[-ni]
[-nos <number_of_stages = -1>]
[-rs <roc_size = 40>]
[-w <sample_width = 24>]
[-h <sample_height = 24>]

也可以用opencv的cvHaarDetectObjects函数进行检测:
CvSeq* faces = cvHaarDetectObjects( img, cascade, storage, 1.1, 2, CV_HAAR_DO_CANNY_PRUNING, cvSize(40, 40) ); //检测人脸

ps:还有一个小建议:大家最好自己编译opencv,这样就可以vs—>project–>properties–>c/c++–>language–>OpenMp support 开启openmp选项,编译出来的exe就是多核并行的,

版权声明:本文为博主原创文章,未经博主允许不得转载。

利用opencv内置程序训练一个自己的分类器

这几天废了九牛二虎之力,训练出了一个分类器。分享一下方法
  • Zgorange
  • Zgorange
  • 2015年03月27日 15:40
  • 623

opencv 训练自己的分类器

1、opencv 3.1.0 和 3.2.0 已经没有了convert_cascade.c 文件,打开 ..\opencv-3.1.0\sources\samples\ 和 ..\opencv-2.4...
  • u010807846
  • u010807846
  • 2017年01月03日 14:41
  • 571

OpenCV训练自己的人脸检测级连分类器并测试

0. 概述分为如下几步:step1. 制作训练数据集step2. 训练分类器step3. 使用分类器进行分类 1. 准备工作建立一个项目目录objection_detection/$ mkdir ob...
  • autoliuweijie
  • autoliuweijie
  • 2016年07月14日 17:26
  • 9685

如何用 opencv 训练自己的分类器

OpenCV训练分类器 一、简介 目标检测方法最初由Paul Viola [Viola01]提出,并由Rainer Lienhart [Lienhart02]对这一方法进行了改善。 该方法的基本...
  • MMG_sysu
  • MMG_sysu
  • 2014年12月10日 02:07
  • 276

如何用opencv训练自己的分类器

最近要做一个性别识别的项目,在人脸检测与五官定位上我采用OPENCV的haartraining进行定位,这里介绍下这两天我学习的如何用opencv训练自己的分类器。在这两天的学习里,我遇到了不少问题,...
  • onlyyouandme
  • onlyyouandme
  • 2009年10月24日 13:29
  • 3787

如何用OpenCV训练自己的分类器

另:英文说明http://se.cs.ait.ac.th/cvwiki/opencv:tutorial:haartraining 最近要做一个性别识别的项目,在人脸检测与五官定位上我采用OPEN...
  • u011974126
  • u011974126
  • 2013年11月04日 10:30
  • 1197

通过opencv训练自己的人脸分类器

opencv训练人脸检测器
  • Lxingmo
  • Lxingmo
  • 2017年10月09日 15:04
  • 581

opencv3.3版本训练自己的物体分类器

Opencv训练自己分类器 注:此文是我整理了网上的各方资料汇集而成,由于在实践中遇到了很多坑,所以把自己的成功训练的经验写下来做个笔记给大家做个参考 1.准备训练样本图片 1.1样本的采集: ...
  • qq_32502511
  • qq_32502511
  • 2018年01月09日 11:04
  • 99

OpenCV训练人脸分类器步骤解析

从网上下载人脸图片正样本,背景负样本各1000张,正样本放在D:\classify\posdata文件夹下,负样本放在D:\classify\negdata文件夹下,正负样本要裁剪一样大小,在此作者采...
  • qq_35759050
  • qq_35759050
  • 2017年03月20日 19:55
  • 476

OpenCV 训练分类器生成XML文件【完整过程】

在网上找了好多相关信息,有几篇写的很好的: http://blog.csdn.net/tyt2222008/article/details/5838389 http://blog.csdn.net/...
  • duhaomin
  • duhaomin
  • 2013年08月21日 17:59
  • 11984
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:如何用OpenCV训练自己的分类器
举报原因:
原因补充:

(最多只允许输入30个字)