过n个有标志顶点的数的数目是n^(n-2)

转载 2013年12月02日 17:51:35

在一个n阶完全图的所有生成树的数量为n的n-2次方

例题:nyoj 127


#include<iostream>
using namespace std;
int f(int n)
{
    int t,i;
    t=n;
    for(i=1;i<n-2;i++)
    {
        t*=n;
        t%=10003;
    }
    return t;
}
int main()
{
    int t,n,m,i;
    cin>>t;
    while(t--)
    {
        cin>>n;
        if(n==2)
        cout<<1<<endl;
        else
        cout<<f(n)<<endl;
    }
}简单点说就是:
一一对应法:
假定T是其中一棵树,树叶中有标号最小者,设为a1,a1的邻接点为b1,从图中消去a1点
和边(a1, b1).b1点便成为消去后余下的树T1的顶点.在余下的树T1中寻找标号最小的树叶,设
为a2,a2的邻接点为b2,从T1中消去a2及边(a2, b2).如此步骤继续n-2次,直到最后剩下一条
边为止.于是一棵树T对应一序列
b1,b2,…,b[n-2]
恢复树T:
序列I    1,2,…n
序列II   b1,b2,…,b[n-2]
在I中找出第一个不出现在II中数,显然是a1,连接边(a1, b1),在I中消去a1,在II中消
去b1.如此步骤重复n-2次,序列I中两个数,构成最后一条边.

以下是来自Matirx67的blog.

ayley公式是说,一个完全图K_n有n^(n-2)棵生成树,换句话说n个节点的带标号的无根树有n^(n-2)个。Cayley公式的一个非常简单的证明,证明依赖于Prüfer编码,它是对带标号无根树的一种编码方式。
    给定一棵带标号的无根树,找出编号最小的叶子节点,写下与它相邻的节点的编号,然后删掉这个叶子节点。反复执行这个操作直到只剩两个节点为止。由于节点数n>2的树总存在叶子节点,因此一棵n个节点的无根树唯一地对应了一个长度为n-2的数列,数列中的每个数都在1到n的范围内。下面我们只需要说明,任何一个长为n-2、取值范围在1到n之间的数列都唯一地对应了一棵n个节点的无根树,这样我们的带标号无根树就和Prüfer编码之间形成一一对应的关系,Cayley公式便不证自明了。
     看到这,我建议自己划一划,结果就出来了(这句话是我的建议,非Matrix67原文)。
注意到,如果一个节点A不是叶子节点,那么它至少有两条边;但在上述过程结束后,整个图只剩下一条边,因此节点A的至少一个相邻节点被去掉过,节点A的编号将会在这棵树对应的Prüfer编码中出现。反过来,在Prüfer编码中出现过的数字显然不可能是这棵树(初始时)的叶子。于是我们看到,没有在Prüfer编码中出现过的数字恰好就是这棵树(初始时)的叶子节点。找出没有出现过的数字中最小的那一个(比如④),它就是与Prüfer编码中第一个数所标识的节点(比如③)相邻的叶子。接下来,我们递归地考虑后面n-3位编码(别忘了编码总长是n-2):找出除④以外不在后n-3位编码中的最小的数(左图的例子中是⑦),将它连接到整个编码的第2个数所对应的节点上(例子中还是③)。再接下来,找出除④和⑦以外后n-4位编码中最小的不被包含的数,做同样的处理……依次把③⑧②⑤⑥与编码中第3、4、5、6、7位所表示的节点相连。最后,我们还有①和⑨没处理过,直接把它们俩连接起来就行了。由于没处理过的节点数总比剩下的编码长度大2,因此我们总能找到一个最小的没在剩余编码中出现的数,算法总能进行下去。这样,任何一个Prüfer编码都唯一地对应了一棵无根树,有多少个n-2位的Prüfer编码就有多少个带标号的无根树。

    一个有趣的推广是,n个节点的度依次为D1, D2, …, Dn的无根树共有(n-2)! / [ (D1-1)!(D2-1)!..(Dn-1)! ]个,因为此时Prüfer编码中的数字i恰好出现Di-1次。

【学习总结】数学-cayley定理

学习总结--数学.cayley定理 定义: 有n个标志节点的树的数目等于nn−2(仅是cayley在组合数学中的应用) 简单证明: 1.首先我们假设n为4,即有3个节点 2.这样的话我们...

Cayley n顶点树数定理

今天遇到一个问题:在一个n阶完全图的所有生成树的数量为n的n-2次方,想了好久也没有想出来,还是在网上找到的。。。 简单点说就是: 一一对应法: 假定T是其中一棵树,树叶中有标号最小者,设为a1...

整数的二进制数中1的数目,1-N中1的总共个数,如何判断一个数是否为2的整数次幂.

①题目:输入一个整数,求该整数的二进制表达中有多少个1。 例如输入10,由于其二进制表示为1010,有两个1,因此输出2。 分析:这是一道很基括微本的考查位运算的面试题。包软在内的很多公司都曾采用...

从0到N的数中总共包含1的数目

  • 2012年11月14日 20:26
  • 3.45MB
  • 下载

在10进制和2进制中,从0到N总共包含1的数目

这是一道比较传统的面试题,自己写了个10进制的求1个数的程序,后来在《编程之美》中发现上面的解法更好一些,随后有用它的方法重写了一遍2进制下的求解方法。   程序源码请点击这里下载。   ...
  • fy2462
  • fy2462
  • 2014年06月17日 14:36
  • 638

题目2.给出一个算法,它能用O(nlgn)的最坏情况运行时间,确定n个元素的任何排列中逆序对的数目

题目:         给出一个算法,它能用O(nlgn)的最坏情况运行时间,确定n个元素的任何排列中逆序对的数目。 前提:         1.不考虑超大数据等特殊情况 代码:      ...

0~N中1的数目

  • 2013年03月11日 22:03
  • 6KB
  • 下载

堆的节点总数n和叶结点数目的关系 (CLRS习题 6.1-7)

来自算法道路CLRS的一个习题。Chapter 6 Heap Sort.  Exercise6.1-7   Show that, with the array representationfor st...

数一数1到n出现1的数目

今天有点闷,和我的博客说说话吧,这个问题在脑子里萦绕有些久, 总坚信自己有24k智商,如此简单的问题,分分钟拿下,可是每次想不出来都遗憾作罢,原来也不过我的智商2.4k而已.^_^. 描述在从1到n...

堆的节点总数n和叶结点数目的关系 (CLRS习题 6.1-7)

来自算法导论 CLRS的一个习题。Chapter 6 Heap Sort.  Exercise6.1-7   Show that, with the array representatio...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:过n个有标志顶点的数的数目是n^(n-2)
举报原因:
原因补充:

(最多只允许输入30个字)