POJ 1012:Joseph

原创 2015年07月09日 18:39:33

Joseph
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 50068   Accepted: 19020

Description

The Joseph's problem is notoriously known. For those who are not familiar with the original problem: from among n people, numbered 1, 2, . . ., n, standing in circle every mth is going to be executed and only the life of the last remaining person will be saved. Joseph was smart enough to choose the position of the last remaining person, thus saving his life to give us the message about the incident. For example when n = 6 and m = 5 then the people will be executed in the order 5, 4, 6, 2, 3 and 1 will be saved. 

Suppose that there are k good guys and k bad guys. In the circle the first k are good guys and the last k bad guys. You have to determine such minimal m that all the bad guys will be executed before the first good guy. 

Input

The input file consists of separate lines containing k. The last line in the input file contains 0. You can suppose that 0 < k < 14.

Output

The output file will consist of separate lines containing m corresponding to k in the input file.

Sample Input

3
4
0

Sample Output

5
30

很小的时候就有的约瑟夫问题,就是一群人(人数为n)围成一桌,从1到n标上号,然后来一个数m,每次数到m的人就被淘汰,从下一个人开始再数m个数,数到m的再被淘汰,就这么淘汰去吧。

这题是有n个好人,n个坏人。好人的标号是从1到n,坏人的标号是从n+1到2*n。题目要找一个m,把坏人都淘汰掉,好人一个都不淘汰。

这题的关键在于不要纠结与坏人的标号,不论人数还剩多少,好人的标号始终是1到n,坏人的标号始终在后面。淘汰一个坏人,只需把剩余的人数减1,剩下的坏人把之前淘汰的坏人填补上,穿好他们的标号就好。所以举个例子

6个人:1 2 3 4 5 6

m=5

第一次从1开始数5位,淘汰5,剩余 1 2 3 4 5(6就往前移一位,穿上5的衣服,这样好人就还是标号1 2 3,坏人标号4 5。剩余5个人)

第二次从5开始数5位,淘汰4,剩余 1 2 3 4 (好人标号1 2 3,坏人标号4)

第三次从4开始数5位,淘汰4,剩余1 2 3 ,游戏结束。

为什么不要纠结于坏人的标号呢?因为不容易得出公式啊,现在不计较坏人的标号的话,我得到的公式就是

kill_num=(kill_num+m-1)%rest

所以我记录一个kill的vector,只要每次淘汰的标号大于n或是等于0,即符合标准,我就把它扔进去,什么时候kill的人数等于n了,说明找到的m是正确的,否则就m++,再找。

(找m)代码:

#include <iostream>
#include <string>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <vector>
using namespace std;

int people[50];
vector <int> kill;

int main()
{
	int n,k=0;
	while(cin>>n)
	{
		int result=n+1,rest=2*n,kill_num=1;
		int n2=2*n;
		
		memset(people,0,sizeof(people));
		kill.clear();
		while(1)
		{
			if(kill.size()==n)
				break;
			if((result+kill_num-1)%rest==0)
			{
				kill_num=rest;
				rest--;
				kill.push_back(rest);
			}
			else if((result+kill_num-1)%rest<=n)
			{
				kill_num=1;
				kill.clear();
				rest=n2;
				result++;
			}
			else
			{
				kill_num=(result+kill_num-1)%rest;
				rest--;
				kill.push_back(kill_num);
			}
		}
		cout<<result<<endl;
	}

	return 0;
}


最终打表代码:

#include <iostream>
using namespace std;

int main()
{
	int result[16];
	int n;
	
	result[1] = 2;
	result[2] = 7;
	result[3] = 5;
	result[4] = 30;
	result[5] = 169;
	result[6] = 441;
	result[7] = 1872;
	result[8] = 7632;
	result[9] = 1740;
	result[10] = 93313;
	result[11] = 459901;
	result[12] = 1358657;
	result[13] = 2504881;
	result[14] = 13482720;
	
	while(cin>>n && n)
	{
		cout<<result[n]<<endl;
	}
	return 0;
}



版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

poj 1012 & hdu 1443 Joseph(约瑟夫环变形)

poj 1012 & hdu 1443 Joseph(约瑟夫环变形)

POJ 1012 Joseph

一道长得像约瑟夫环的非约瑟夫环问题。 从思路上来讲的话应该算道模拟题。 注意到环中的好人始终占据1~n这n个位置, 而坏人可以不区分顺序,因为不论本轮死去谁,剩下的环中,好人与坏人排列是一样的。...
  • Tang_YT
  • Tang_YT
  • 2016年02月20日 20:17
  • 116

POJ 1012 Joseph

题目大意:给定一个k,代表有k个好人和k个坏人。按照约瑟夫问题的规则进行。求出最小的m,使经过k轮后,k个坏人全部被杀死。 思路: (1)先给出约瑟夫环的递推公式:f(i)=(f(i-1)+m-1...

POJ1012 Joseph解题报告

_考查点: 约瑟夫问题的变形。 _思路: 这里是要知道每一次出局的人的范围。而最初的约瑟夫问题只能知道最后一个出局的人的编号。我所知道的有两种方法(均是数学方法)一个是暴力枚举加打表(0MS过掉)...

POJ 1012 Joseph 变形约瑟夫环

子问题与原问题........ 题意: 有k个坏人k个好人坐成一圈,前k个为好人(编号1~k),后k个为坏人(编号k+1~2k) 现在有一个报数m,从编号为1的人开始报数,报到m的人就要自动死去。问当...

POJ1012Joseph解题报告

约瑟夫环 POJ 1012 Joseph解题报告

poj 1012 Joseph

Joseph Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 44668   Accepted: 16847 ...

poj1012 -- Joseph (约瑟夫环)

Joseph Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 54077   Accepted: 20646 ...
  • BestFSQ
  • BestFSQ
  • 2017年04月07日 21:01
  • 94

POJ 1012 Joseph

推公式,记录已求得的结果,不用打表也能过!

poj 1012 Joseph(约瑟夫环求每次出圈人的序号)

http://poj.org/problem?id=1012 题意:
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:POJ 1012:Joseph
举报原因:
原因补充:

(最多只允许输入30个字)