RANSAC算法的学习(一)

原创 2015年11月18日 23:21:59

RANSAC拟合直线的伪代码

确定:
  n——所需的最少点数
  k——需要的迭代次数
  t——用来判断一个点是否拟合得很好的阈值
  d——判断一个点是否拟合的很好所需要的临近点数
直到k次迭代完成
    从数据中均匀随机的采样n个点
    对这n个点进行拟合
    对于在采样外的每一个点
        用t比较点到直线的距离,如果距离小于t,那么点是很靠近的
    end
    如果有d或更多个点靠近直线,那么是一个好的拟合。重新用这些点拟合直线
end
使用拟合误差作为标准,挑出最好的拟合

对于一般的模型

对于一般的模型M和给定的测量数据点集D,RANSAC估计模型参数p的一般步骤如下:
1.确定求解模型M,即确定模型参数p ,所需要的最小数据点的个数n。由n个数据点组成的子集称为模型M的一个样本;
2.从数据点集D中随机地抽取一个样本J由该样本计算模型的一个实例M_p(J),确定与M_p(J)之间几何距离<阈值t的数据点所构成的集合,并记做S(M_p(J)),称为实例M_p(J)的一致集;
3.如果在一致集S(M_p(J))中的数据点个数T_{S(M_p(J))}>阈值T,则用S(M_p(J))重新估计模型M并输出结果;如果T_{S(M_p(J))}<阈值T,返回步骤2;
4.经过K次随机抽样,选择最大的一致集S(M_p(J)),用S(M_p(J))重新估计模型M输出结果

版权声明:

相关文章推荐

RANSAC 算法学习与测试

RANSAC算法简介RANSAC是随机抽样一致性算法的简称。作用是在一系列数据点中,找出与期望的数学模型最接近的数据。 在找的时候,先随机抽取若干数据,这些数据足够用来拟合期望的数学模型;用初始数据...

ransac 算法事例

  • 2012-03-17 20:45
  • 16KB
  • 下载

随机抽样一致性算法(RANSAC)

作者:王先荣    本文翻译自维基百科,英文原文地址是:http://en.wikipedia.org/wiki/ransac,如果您英语不错,建议您直接查看原文。    RANSAC是“RANdom...

随机采样一致算法RANSAC

  • 2010-06-13 11:59
  • 1.20MB
  • 下载

【特征匹配】RANSAC算法原理与源码解析

随机抽样一致性(RANSAC)算法,可以在一组包含“外点”的数据集中,采用不断迭代的方法,寻找最优参数模型,不符合最优模型的点,被定义为“外点”。在图像配准以及拼接上得到广泛的应用,本文将对RANSA...

RANSAC与最小二乘算法的应用

RANSAC的原理介绍有:http://en.wikipedia.org/wiki/Ransac 最小二乘法least squares的原理介绍有: http://en.wikipedia.or...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)