RANSAC算法的学习(一)

原创 2015年11月18日 23:21:59

RANSAC拟合直线的伪代码

确定:
  n——所需的最少点数
  k——需要的迭代次数
  t——用来判断一个点是否拟合得很好的阈值
  d——判断一个点是否拟合的很好所需要的临近点数
直到k次迭代完成
    从数据中均匀随机的采样n个点
    对这n个点进行拟合
    对于在采样外的每一个点
        用t比较点到直线的距离,如果距离小于t,那么点是很靠近的
    end
    如果有d或更多个点靠近直线,那么是一个好的拟合。重新用这些点拟合直线
end
使用拟合误差作为标准,挑出最好的拟合

对于一般的模型

对于一般的模型M和给定的测量数据点集D,RANSAC估计模型参数p的一般步骤如下:
1.确定求解模型M,即确定模型参数p ,所需要的最小数据点的个数n。由n个数据点组成的子集称为模型M的一个样本;
2.从数据点集D中随机地抽取一个样本J由该样本计算模型的一个实例M_p(J),确定与M_p(J)之间几何距离<阈值t的数据点所构成的集合,并记做S(M_p(J)),称为实例M_p(J)的一致集;
3.如果在一致集S(M_p(J))中的数据点个数T_{S(M_p(J))}>阈值T,则用S(M_p(J))重新估计模型M并输出结果;如果T_{S(M_p(J))}<阈值T,返回步骤2;
4.经过K次随机抽样,选择最大的一致集S(M_p(J)),用S(M_p(J))重新估计模型M输出结果

采用Vivado HLS为视频处理实现中值滤波器和排序网络

Vivado的高层次综合功能将帮助您为嵌入式视频应用设计更好的排序网络。 从汽车到安全系统再到手持设备,如今采用嵌入式视频功能的应用越来越多。每一代新产品都需要更多的功能和更好的图像质量。但是,...

使用VIVADO HLS工具封装ORB算法

ORB特征是将FAST特征点的检测方法与BRIEF特征描述子结合起来,并在它们原来的基础上做了改进与优化。 该算法的旋转不变性、特征点和特征描述字等概念自行百度。 这里主要提供封装思路: a、对不了...
  • beny270
  • beny270
  • 2017年08月07日 17:56
  • 151

RANSAC 算法学习与测试

RANSAC算法简介RANSAC是随机抽样一致性算法的简称。作用是在一系列数据点中,找出与期望的数学模型最接近的数据。 在找的时候,先随机抽取若干数据,这些数据足够用来拟合期望的数学模型;用初始数据...

RANSAC算法在视频抖动中的应用

  • 2012年08月16日 11:24
  • 2.38MB
  • 下载

随机采样一致算法RANSAC

  • 2010年06月13日 11:59
  • 1.2MB
  • 下载

利用RANSAC算法筛选SIFT特征匹配

关于RANSAC算法的基本思想,可从网上搜索找到,这里只是RANSAC用于SIFT特征匹配筛选时的一些说明。 RANSAC算法在SIFT特征筛选中的主要流程是: (1) 从样本集中随机抽选...

我的数学之美(一)——RANSAC算法详解

给定两个点p1与p2的坐标,确定这两点所构成的直线,要求对于输入的任意点p3,都可以判断它是否在该直线上。初中解析几何知识告诉我们,判断一个点在直线上,只需其与直线上任意两点点斜率都相同即可。实际操作...
  • onlyzkg
  • onlyzkg
  • 2015年01月28日 16:33
  • 1160
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:RANSAC算法的学习(一)
举报原因:
原因补充:

(最多只允许输入30个字)