关闭

图的幂律度分布 power-law degree distributios

标签: 幂律分布-图
563人阅读 评论(0) 收藏 举报
分类:

讲的一篇图论文中说到,“The natural graphs commonly found in the real-world have highly skewed power-law degree distributios ……”,开始只是了解个大概,后来经查才知道。power-law degree distributios原来是一种描述网络图中结点度的分布,中文可叫做“幂律度分布”。

维基百科词条“复杂网络”中对“无尺度网络”的介绍中,可对“幂律度分布”有进一步地了解。

资料解释如下:

网络的度分布,是指当随机地从网络中抽取一个节点时,与这个节点相连的节点数(叫做这个节点的度)d 的概率分布。
比如:对一个n个节点组成的完全图度分布是:d = n - 1 的概率是1,其余的都是0。
无尺度网络的度分布满足幂律分布,也就是说d = k 的概率正比于k 的某个幂次(一般是负的):
\mathbb{P} (d = k) \propto k^{-\alpha}
(==加一句,这个符号是“正比于”的意思??好吧~见过好几次了)
随机网络的度分布属于正态分布,因此有一个特征度数,即大部分节点的度数都接近它。
无尺度网络的度分布是呈集散分布:大部分的节点只有比较少的连接,而少数节点有大量的连接。由于不存在特征度数,因此得名“无尺度”。
无尺度网络的例子有很多。因特网、美国演员网络、细胞中蛋白质的交互网络都是无尺度网络。

无尺度网络的特性是:当节点意外失效或改变时,对网络的影响一般很小,只有很小的概率会发生大的影响,但当有集散节点受到影响时,网络受到的影响会比随机网络大得多。

再盗个别人slides中的一个图。意思很明了,其中有1%的结点连接着一半的边,其余一半的边被剩余99%的结点所共用。
这里写图片描述

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:166075次
    • 积分:1887
    • 等级:
    • 排名:千里之外
    • 原创:8篇
    • 转载:231篇
    • 译文:0篇
    • 评论:3条