图的幂律度分布 power-law degree distributios

转载 2015年11月17日 21:23:27

讲的一篇图论文中说到,“The natural graphs commonly found in the real-world have highly skewed power-law degree distributios ……”,开始只是了解个大概,后来经查才知道。power-law degree distributios原来是一种描述网络图中结点度的分布,中文可叫做“幂律度分布”。

维基百科词条“复杂网络”中对“无尺度网络”的介绍中,可对“幂律度分布”有进一步地了解。

资料解释如下:

网络的度分布,是指当随机地从网络中抽取一个节点时,与这个节点相连的节点数(叫做这个节点的度)d 的概率分布。
比如:对一个n个节点组成的完全图度分布是:d = n - 1 的概率是1,其余的都是0。
无尺度网络的度分布满足幂律分布,也就是说d = k 的概率正比于k 的某个幂次(一般是负的):
\mathbb{P} (d = k) \propto k^{-\alpha}
(==加一句,这个符号是“正比于”的意思??好吧~见过好几次了)
随机网络的度分布属于正态分布,因此有一个特征度数,即大部分节点的度数都接近它。
无尺度网络的度分布是呈集散分布:大部分的节点只有比较少的连接,而少数节点有大量的连接。由于不存在特征度数,因此得名“无尺度”。
无尺度网络的例子有很多。因特网、美国演员网络、细胞中蛋白质的交互网络都是无尺度网络。

无尺度网络的特性是:当节点意外失效或改变时,对网络的影响一般很小,只有很小的概率会发生大的影响,但当有集散节点受到影响时,网络受到的影响会比随机网络大得多。

再盗个别人slides中的一个图。意思很明了,其中有1%的结点连接着一半的边,其余一半的边被剩余99%的结点所共用。
这里写图片描述

Python数据可视化:幂律分布

1、公式推导 对幂律分布公式: 对公式两边同时取以10为底的对数: 令,且为常数,所以公式变为: 所以对于幂律公式,对X,Y取对数后,在坐标轴上为线性方程。2、可视化 从图形上来说,...

随机图 & 如何处理Power-law(幂律)分布的数据

在研究复杂网络中,研究者使用的主要工具就是随机图理论。该理论创始于上个世纪40年代。由Erdos等人创立。最早提出的经典随机图模型就是ER模型。在随机图中,边的出现成为概率事件。随机图和经典图之间最大...

幂律分布现象-power-law

自然界与社会生活中存在各种各样性质迥异的幂律分布现象。         1932年,哈佛大学的语言学专家Zipf在研究英文单词出现的频率时,发现如果把单词出现的频率按由大到小的顺序排列,则每个单词...

幂律power-law

自然界与社会生活中存在各种各样性质迥异的幂律分布现象。      1932年,哈佛大学的语言学专家Zipf在研究英文单词出现的频率时,发现如果把单词出现的频率按由大到小的顺序排列,则每个单词出现的频...

[python数据分析] 简述幂率定律及绘制Power-law函数

这篇文章主要是最近研究人类行为应用的内容,主要简单叙述下复杂网络的幂率分布以及绘制Power-law函数一些知识,同时是一篇在线笔记。希望对您有所帮助,如果文章中存在不足或错误的地方,还请海涵~ ...

lecture notes on power law distribution

  • 2011年03月27日 16:11
  • 175KB
  • 下载

第十章:在Spark集群上掌握比较重要的图操作之Computing Degree

Degree是离散数学的概念,在Spark GraphX中把Degree分为inDgrees、outDegrees、degrees等三种不同的degree,以下图为例: 在上面这...

HDU 2454 Degree Sequence of Graph G(Havel定理 判断简单图的存在)

HDU 2454 Degree Sequence of Graph G(Havel定理 判断简单图的存在)

HDOJ2454(Degree Sequence of Graph G)(Havel-Hakimi定理判断所给序列是否可化成简单图)

Degree Sequence of Graph G Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (J...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:图的幂律度分布 power-law degree distributios
举报原因:
原因补充:

(最多只允许输入30个字)