Problem: Decode Ways
A message containing letters from A-Z is being encoded to numbers using the following mapping:
'A' -> 1
'B' -> 2
...
'Z' -> 26
Given an encoded message containing digits, determine the total number of ways to decode it.
For example,
Given encoded message "12", it could be decoded as "AB" (1 2) or "L" (12).
The number of ways decoding "12" is 2.
分析:
这道题和Restore IP Address很像,dfs的思路可以参考那一题,同时如果输入数据过大的话,我们也可以用DP来解决
Solution1: (dfs version) -- OJ大数据超时
public class Solution {
int num;
public int numDecodings(String s) {
if (s.length()==0) return 0;
num = 0;
dfs(s);
return num;
}
public void dfs(String s){
if (s.length()==0) num++;
for(int i=0;i<=1&&i<s.length();i++){
if (isValid(s.substring(0,i+1)))
dfs(s.substring(i+1));
}
}
public boolean isValid(String s){
if (s.charAt(0)=='0') return false;
int code = Integer.parseInt(s);
return code>=1 && code<=26;
}
}
需要注意的地方,
1. 每次dfs里面我们先从1位开始取,然后再取2位,要小心越界的问题,到后面字符的长度可能只有1位,所以i < s.length()
2. 检查字符是否Valid的时候和Restore IP Address一样,要小心0的情况,不过这道题比那道题简单,如果出现0直接返回False
来说一下DP的解法
从头到尾扫这个String,比如我们想知道到,从第一位到dp[i]这一位组成的String,有多少种解码组合,那么有两种情况
第一:如果dp[i]所对应的的单个字符可以解码,那么dp[i]就包括前dp[i-1]位所积累的组合数 dp[i] = dp[i-1]
第二:如果不仅dp[i]所对应的的单个字符可以解码,dp[i-1] - dp[i],两个字符组成的也可以解码,那么不仅包括dp[i-1]积累的组合数,也包括dp[i-2]位积累的组合数 dp[i] = dp[i-1] + dp[i-2]
我们建一个n+1的数组,为了程序简洁,我们在最前面放一个1。这样一来要注意数组里的index -1==String里的index
public class Solution {
public int numDecodings(String s) {
int n = s.length();
if (n==0) return 0;
int[] dp = new int[n+1];
dp[0] = 1;
if (isValid(s.substring(0,1))) dp[1] = 1;
else dp[1] = 0;
for(int i=2; i<=n;i++){
if (isValid(s.substring(i-1,i)))
dp[i] = dp[i-1];
if (isValid(s.substring(i-2,i)))
dp[i] += dp[i-2];
}
return dp[n];
}
public boolean isValid(String s){
if (s.charAt(0)=='0') return false;
int code = Integer.parseInt(s);
return code>=1 && code<=26;
}
}
本文探讨了如何计算一个由A-Z字母编码成数字的消息的所有可能解码方式的数量。通过深度优先搜索(DFS)和动态规划(DP)两种方法解析问题,并提供了详细的代码实现。

被折叠的 条评论
为什么被折叠?



