关闭

hdu 4781 Assignment For Princess

标签: 构造
344人阅读 评论(0) 收藏 举报
分类:

题目大意来自网上众多博客的大神翻译。

题目大意:有一个n个点,m条边的有向图,每条边的权值分别为1,2,3........m,让你构造满足下列条件的有向图。

1:每两个点之间最多只有一条有向边,且不存在自环。

2:从任意点出发都可以达到其他任意一个点,包括自己。

3:任意一个有向环的权值和都是3的倍数。


思路:首先我们可以将点1到n连成一条链,边的权值分别是1到n-1,然后点n到点1连一条边,这个时候体现出了一条规律,若n%3为0或2,则加上的边边权值为n,否则边权值为n+2。(对于本人来说这是条规律)

现在我们构造出了一个环且满足上述三个条件。

现在只需要在I和J两个点之间连其他线就好了,需要满足的条件是len%3==I和J之间原链上的距离%3.代码还需要判断这两个点是否已经有过连线,否则继续暴力。


可能因为脸黑,函数里面的循环里面写RETURN 1;会被OJ爆出CE,改成flag版本莫名其妙就过了。

代码如下:

#include <iostream>
#include <cstdio>
#include <cmath>
#include <vector>
#include <cstring>
#include <algorithm>
#include <string>
#include <set>
#include <functional>
#include <numeric>
#include <sstream>
#include <stack>
#include <map>
#include <queue>
using namespace std;
typedef struct{
int from;
int to;
int len;	
}an;
int h[3]={0,2,0};
an ans[5010];
int mp[100][100];
int vis[5010];
int sum[100];
long long n; 
int solve(int len,int num)
{
	int temp = len%3;
	int flag  = 0; 
	for(int i=1;i<=n;i++)
	{
		for(int j=1;j<=n;j++)
		{
			if(i!=j&&mp[i][j]!=1&&mp[j][i]!=1)
			{ 
				if((sum[j]-sum[i]+3)%3==temp)
				{
					ans[num].from = i;
					ans[num].to = j;
					ans[num].len = len; 
					mp[i][j] = 1;
					flag =1;
					break; 
					 
				} 	
			} 
		} 
		if(flag == 1 )break; 
	} 
	return flag; 
} 
int main()
{
	long long T;
	cin >> T;
	long long g=1; 
	while(T--)
	{
		long long m;
		cin >> n >> m;
		memset(sum,0,sizeof(sum));
		memset(vis,0,sizeof(vis));
		memset(mp,0,sizeof(mp));
		for(int i=1;i<n;i++)
		{
			ans[i].from = i;
			ans[i].to = i+1;
			ans[i].len = i;
			vis[i] = 1;
			mp[i][i+1] = 1;
			if(i!=1)
			sum[i] = (i-1+sum[i-1])%3;
		}
		//开始构造封闭的环。
		ans[n].len = n+h[n%3];
		ans[n].from = n;
		ans[n].to = 1;
		vis[ans[n].len]=1;
		mp[n][1] = 1;
		sum[n] =  (n-1+sum[n-1])%3;
		
		//开始加其他边;
		int num=n,flag = 1; 
		for(int i=1;i<=m;i++)
		{
			if(!vis[i]) 
			{
				flag = solve(i,++num);
				if(!flag)
				break; 
			} 
		} 
		cout<<"Case #"<<g++<<":"<<endl; 
		if(flag==0)cout<<-1<<endl;
		else 
		{
			for(int i=1;i<=m;i++)
			{
				cout<<ans[i].from<<" "<<ans[i].to<<" "<<ans[i].len<<endl; 
			} 
		} 
	}
	
	return 0;
}

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:63464次
    • 积分:1595
    • 等级:
    • 排名:千里之外
    • 原创:114篇
    • 转载:3篇
    • 译文:0篇
    • 评论:8条
    好友博客
    博客专栏
    最新评论