从稀疏表示到压缩感知(上)

原创 2016年08月29日 16:36:08

原文《白话压缩感知》

old / xiahouzuoxin

Tags: DSP

   

压缩感知介绍

压缩感知(Compressive Sensing,CS),有时也叫成Compressive Sampling。相对于传统的奈奎斯特采样定理——要求采样频率必须是信号最高频率的两倍或两倍以上(这就要求信号是带限信号,通常在采样前使用低通滤波器使信号带限),压缩感知则利用数据的冗余特性,只采集少量的样本还原原始数据。

这所谓的冗余特性,借助MLSS2014马毅老师的课件上的例子来说明,

data_property

因为自然界的数据都存在局部低维结构、周期性、对称性等,因此,传统的固定采样率的采样方法必然存在信息冗余。由于信息冗余的存在,我们就知道有数据压缩那么一门学科。既然这样,为什么要把冗余的数据也采进来,再进行压缩呢,能不能不把冗余的数据采集进来?

压缩感知的思路就是:在采集的过程中就对数据进行了压缩,而且这种压缩能保证不失真(低失真)的恢复原始数据,这与传统的先2倍频率采集信号存储再压缩的方式不同,可以降低采集信号的存储空间和计算量。

好了,那么就来了解一下压缩感知的具体模型。

   

From <http://xiahouzuoxin.github.io/notes/html/%E7%99%BD%E8%AF%9D%E5%8E%8B%E7%BC%A9%E6%84%9F%E7%9F%A5.html>

版权声明:本文为博主原创文章,转载时请注明来源。有问题请e-mail:mr.baishu@gmail.com

相关文章推荐

关于NP,NP-hard,P,NPC等相关问题的讨论

你会经常看到网上出现“这怎么做,这不是NP问题吗”、“这个只有搜了,这已经被证明是NP问题了”之类的话。你要知道,大多数人此时所说的NP问题其实都是指的NPC问题。他们没有搞清楚NP问题和NPC问题的...

从稀疏表示到压缩感知(下)

原From http://xiahouzuoxin.github.io/notes/html/%E7%99%BD%E8%AF%9D%E5%8E%8B%E7%BC%A9%E6%84%9F%E7%9F%A...

稀疏表示中压缩感知库Kl1p的配置方法

1 浅谈稀疏表示和压缩感知 写这篇博客是应为需要用稀疏表示做人脸识别(当时还没有做完,效果也还不清楚),要求用C++实现,理所应当想到应该借用opencv这个开源工具,可惜发现仅仅opencv还是不...

稀疏表示和压缩感知

稀疏性与L1范数转自http://blog.sina.com.cn/s/blog_49b5f5080100b62Sparse, L1-minimization, Compressive Sensing...

压缩感知与稀疏表示

压缩感知,本为信号处理领域中对传统采样定理的改进,现已发展到与信号相关的各个领域,如合成孔径雷达成像、遥感成像、核磁共振成像、深空探测成像、无线传感器网络、信源编码、人脸识别、语音识别、探地雷达成像等...

稀疏表示与压缩感知学习资料整理

转自http://blog.csdn.net/alec1987/archive/2011/05/10/6408604.aspx     Sparse, L1-minimization...

压缩感知稀疏贝叶斯算法

  • 2017年10月31日 20:36
  • 478KB
  • 下载

压缩感知重构算法之稀疏度自适应匹配追踪(SAMP)

题目:压缩感知重构算法之稀疏度自适应匹配追踪(SAMP) 转载自彬彬有礼的专栏         鉴于前面所述大部分OMP及其前改算法都需要已知信号的稀疏度K,而在实际中这个一般是不知道的,基于...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:从稀疏表示到压缩感知(上)
举报原因:
原因补充:

(最多只允许输入30个字)