《neural network and deep learning》题解——ch03 如何选择神经网络的超参数

原创 2017年08月31日 15:59:31

http://blog.csdn.net/u011239443/article/details/77748116

问题一

上一节有问题也是调参,我们在这里讲解:

更改上面的代码来实现 L1 规范化,使用 L1 规范化使用 30 个隐藏元的神经网络对 MNIST数字进行分类。你能够找到一个规范化参数使得比无规范化效果更好么?

如何修改代码可参阅上节:http://blog.csdn.net/u011239443/article/details/77649026#t5

当无规范化时,我们将上节的代码update_mini_batch中做修改:

self.weights = [w - (eta / len(mini_batch)) * nw for w, nw in
                        zip(self.weights, nabla_w)]

total_cost中去掉:

cost += 0.5 * (lmbda / len(data)) * sum(np.linalg.norm(w) ** 2 for w in self.weights)

为了加快我们的训练,我们使得将训练集设置为1000,验证集设置为100:

net.SGD(training_data[:1000],30,10,0.5,evaluation_data=validation_data[:100],monitor_evaluation_accuracy=True)

结果:

Epoch 30 training complete
Acc on evaluation: 17 / 100

加入 L1 , λ = 100.0 时,结果:

Epoch 30 training complete
Acc on evaluation: 11 / 100

λ = 10.0 时,结果:

Epoch 29 training complete
Acc on evaluation: 11 / 100

λ = 1.0 时,结果:

Epoch 30 training complete
Acc on evaluation: 31 / 100

所以当λ = 1.0 时使,可以使得比无规范化效果更好。

问题二

修改 network2.py 来实现提前终止,并让 n 回合不提升终止策略中的 n 称为可以设置的参数。

随机梯度函数多加一个参数max_try:

    def SGD(self, training_data, epochs, mini_batch_size, eta,
            lmbda=0.0,
            evaluation_data=None,
            monitor_evaluation_cost=False,
            monitor_evaluation_accuracy=False,
            monitor_training_cost=False,
            monitor_training_accuray=False,max_try = 100):

cnt 记录不提升的次数,如达到max_try,就退出循环。这里用monitor_evaluation_accuracy举例:

        cnt = 0
        for j in xrange(epochs):
             ......
             if monitor_evaluation_accuracy:
                acc = self.accuracy(evaluation_data)
                evaluation_accurary.append(acc)
                if len(evaluation_accurary) > 1 and acc < evaluation_accurary[len(evaluation_accurary)-2]:
                    cnt += 1
                    if cnt >= max_try:
                        break
                else:
                    cnt = 0
                print "Acc on evaluation: {} / {}".format(acc, n_data)
           ......

问题三

你能够想出不同于 n 回合不提升终止策略的其他提前终止策略么?理想中,规则应该能够获得更高的验证准确率而不需要训练太久。将你的想法实现在 network2.py 中,运行这些实验和 3 回合(10 回合太多,基本上训练全部,所以改成 3)不提升终止策略比较对应的验证准确率和训练的回合数。

策略与实现

多一个参数x,当提升率小于x,则停止。

随机梯度函数多加一个参数max_x:

    def SGD(self, training_data, epochs, mini_batch_size, eta,
            lmbda=0.0,
            evaluation_data=None,
            monitor_evaluation_cost=False,
            monitor_evaluation_accuracy=False,
            monitor_training_cost=False,
            monitor_training_accuray=False,min_x = 0.01):

当提升率小于x,则停止。这里用monitor_evaluation_accuracy举例:

            if monitor_evaluation_accuracy:
                acc = self.accuracy(evaluation_data)
                evaluation_accurary.append(acc)
                if len(evaluation_accurary) > 1 and \
                        (acc - evaluation_accurary[len(evaluation_accurary)-2])*1.0/(1.0*n_data) < min_x:
                    break
                print "Acc on evaluation: {} / {}".format(acc, n_data)

对比

10 回合不提升终止策略:

net.SGD(training_data[:1000],50,10,0.25,5.0,evaluation_data=validation_data[:100],
        monitor_evaluation_accuracy=True,max_try=3)

的结果:

Epoch 32 training complete
Acc on evaluation: 15 / 100

提升率小于x停止策略:

Epoch 3 training complete
Acc on evaluation: 17 / 100

问题四

更改 network2.py 实现学习规则:每次验证准确率满足满足 10 回合不提升终止策略时改变学习速率;当学习速率降到初始值的 1/128 时终止。

对问题二中的代码进行稍微的修改,128 = 2 ^ 7 。所以,多加个计数 del_cnt 记录学习率减小的次数:

        cnt = 0
        del_cnt = 0
        for j in xrange(epochs):
        ......
            if monitor_evaluation_accuracy:
                acc = self.accuracy(evaluation_data)
                evaluation_accurary.append(acc)
                if len(evaluation_accurary) > 1 and acc < evaluation_accurary[len(evaluation_accurary)-2]:
                    cnt += 1
                    if cnt >= max_try:
                        del_cnt += 1
                        if del_cnt >= 7:
                            break
                        eta /= 2.0
                        cnt = 0   
                else:
                    cnt = 0
                print "Acc on evaluation: {} / {}".format(acc, n_data)

问题五

使用梯度下降来尝试学习好的超参数的值其实很受期待。你可以想像关于使用梯度下降来确定 λ 的障碍么?你能够想象关于使用梯度下降来确定 η 的障碍么?

  • 使用梯度下降来确定 λ 的障碍在于,

    得:
    Cλ=ww22n=0
    最优化目标使得 w = 0,但是 w 也是我们原来需要优化的。

  • 使用梯度下降来确定 η 的障碍在于,η 的最优解不是一个常数,随着迭代次数的增加,η 的最优解会越来越小。

这里写图片描述

版权声明:本文为博主原创文章,转载请附上原文地址。

相关文章推荐

十、如何选择神经网络的超参数

本节主要介绍了如何选择神经网络中的超参数。根据神经网络中超参数的特性对超参数进行分类,并给出了大致三种调整超参数的方法。首先根据机理确定激活函数的种类,代价函数的种类,权重初始化的方法,输出层的编码方...

什么是超参数

当参数时随机变量时,该参数分布中的参数就是超参数,简单的说就是参数的参数,感觉一般在贝叶斯方法中出现 所谓超参数,就是机器学习模型里面的框架参数,比如聚类方法里面类的个数,或者话题模...
  • xiewenbo
  • xiewenbo
  • 2016年06月04日 16:50
  • 13784

Java Math.abs

众所周知,int类型整数的范围在-(2的32次幂)到(2的32次幂)-1,即是-2147483648到2147483647,因此Math.abs函数规定,当abs的传入参数是Integer.MIN_V...

python cPickle的使用

我这里举个使用cPickle的例子并使用gzip import gzip import cPickle # import numpy import time nums=[] start =...

《neural network and deep learning》题解——ch01 神经网络

在线阅读:http://neuralnetworksanddeeplearning.com/1.2 S 型神经元问题 1证:σ(cw,cb)=11+e−∑jcwjxj−cb=11+e−cz\large...

《neural network and deep learning》题解——ch03 交叉熵代价函数

http://blog.csdn.net/u011239443/article/details/750912833.1 交叉熵代价函数问题一 验证 σ'(z)=σ(z)(1−σ(z))σ ′ (z...

《neural network and deep learning》题解——ch02 反向传播

2.4 反向传播的四个基本方程(BP1):δL=∇aC⊙σ′(zL)\large \color{blue}{ (BP1):δ ^L = ∇ _a C ⊙ σ ′ (z ^L ) } (BP2)...

Neural Networks and Deep Learning学习笔记ch5 - 为什么深度神经网络很难训练?

深度神经网络前面的章节介绍了反向传播算法和一些常见的改进神经网络的训练效果的方法。前面还只是停留在只有一个隐藏层的神经网络。 如上图所示,这样的一个神经网络就只有输入、输出层和一个隐藏层。在手写...

Neural Networks and Deep Learning学习笔记ch1 - 神经网络

最近开始看一些深度学习的资料,想学习一下深度学习的基础知识。找到了一个比较好的tutorial,Neural Networks and Deep Learning,认真看完了之后觉得收获还是很多的。从...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:《neural network and deep learning》题解——ch03 如何选择神经网络的超参数
举报原因:
原因补充:

(最多只允许输入30个字)