关闭

基于proxychains4进行终端加速 wget,curl等

基于proxychains4进行终端加速 wget,curl等@(Macbook使用技巧学习)电脑上使用ss加速后,往往只是浏览器上可用,但是在终端上并不可行,比如wget,curl等。比如这次想用wget下载文件,但是速度很慢,有一种解决方法是新建一个配置文件~/.wgetrc,写入内容:use_proxy=yes http_proxy=http://127.0.0.1:1086 https_pr...
阅读(31) 评论(0)

CNN中的权值共享理解

基本名词对应:Feature Map : 特征图,特征映射 Weight:权值,权重权值共享CNN是权重共享,减少了参数的数量。这个有必要再对比研究一下。 一般神经网络层与层之间的连接是,每个神经元与上一层的全部神经元相连,这些连接线的权重独立于其他的神经元,所以假设上一层是m个神经元,当前层是n个神经元,那么共有m×nm \times n个连接,也就有m×nm \times n个权重。权重矩阵...
阅读(58) 评论(0)

Leetcode 1. Two Sum

Leetcode 1. Two Sum@(LeetCode题目分析) 基于Python3 题目描述Given an array of integers, return indices of the two numbers such that they add up to a specific target.You may assume that each input would have exa...
阅读(69) 评论(0)

使用Pycharm运行TensorFlow,Virtualenv安装TensorFlow

使用Pycharm运行TensorFlow,Virtualenv安装TensorFlow@(Machine Learning with Python)系统:MacOS 10.13本篇关注的是两个问题: 通过virtualenv创建虚拟环境,并在此环境下安装TensorFlow 在Pycharm下配置解释器,在Pycharm下运行训练代码 Virtualenv + TensorflowTensorFl...
阅读(116) 评论(0)

机器学习中的Bias,Error,Variance的区别

机器学习中的Bias,Error,Variance的区别@(Machine Learning)名词解释 Error | 误差 Bias | 偏差 – 衡量准确性 Variance | 方差 – 衡量稳定性 这三个概念的关系是我当前不太理解的。详细阅读参考网页。首先,三者的关系是:Error=Bias+VarianceError = Bias + VarianceError反映的是整个模型的准确度,...
阅读(122) 评论(0)

Q-Learning算法学习

Q-Learning算法学习简介Q-Learning算法下,目标是达到目标状态(Goal State)并获取最高收益,一旦到达目标状态,最终收益保持不变。因此,目标状态又称之为吸收态。Q-Learning算法下的agent,不知道整体的环境,知道当前状态下可以选择哪些动作。通常,我们需要构建一个即时奖励矩阵R,用于表示从状态s到下一个状态s’的动作奖励值。由即时奖励矩阵R计算得出指导agent行动的...
阅读(841) 评论(0)

Monto Carlo估计动作价值(action values)

Monto Carlo估计动作价值(action values)@(Machine Learning)名词翻译 action 行动,动作 action values 动作价值 state values 状态价值 policy 策略 总体思路 总体的指导思路是:在Model未知时,估计动作价值要比估计状态价值要有用一些。 而当Model是已知的,仅仅利用状态价值就足够决定策略。Model未知时,只...
阅读(205) 评论(0)

强化学习基础总结(三)

强化学习基础总结(三)@(Machine Learning)覆盖以下几个主题: Markov过程 Markov奖励过程 Markov决策过程 MDPs扩展 MDP简介MDP是用于正式描述强化学习模型中的环境(environment)。这里的环境是完全可观测的。几乎所有的RL问题都可以被定义为MDP模型。马尔可夫性如前面文章所说,马尔可夫性就是:给定现在,将来与过去无关。数学语言描述就是:P[St+1...
阅读(270) 评论(0)

机器学习相关内容

机器学习相关内容会首发在微信公众号:机器学习小分队。扫码关注:...
阅读(180) 评论(0)

强化学习基础(二)

强化学习基础(二)@(Machine Learning)State分类环境状态 Environment State字面理解起来就是,用于表现环境信息数据,记号为SetS_t^e。统通常来说,SetS^e_t是agent不可见的。而即便SetS_t^e可见,它包含的信息对于agent来说有些也是无关的。智能体状态 agent state记作SatS_t^a,用于内在表示agent处于的状态。这个信息用...
阅读(171) 评论(0)

强化学习的基础总结(一)

强化学习的基础总结(一)@(Machine Learning)机器学习从大类上来分,可以有三种: 监督学习 无监督学习 强化学习 现在关注强化学习。强化学习泛泛来说,是一种决策方法。Q:强化学习的与众不同之处是什么? A:有以下几点。 + 无监督。只有奖励信号。而不是监督学习中的标记空间。 + 延迟反馈。奖励系统针对的是行为(action),是一种对动态的评价。 + 时间很重要。强化学习是用...
阅读(270) 评论(0)

机器学习相关基本术语

机器学习相关基本术语@(Machine Learning)学习/训练(Learning/Training):从数据中学得模型的过程。学习过程就是找出或者逼近真相。模型也称作学习器(learner)。标记空间:label space也称作输出空间。示例结果称作标记。学习任务的分类 分类(classification) 回归(regression) 预测的值是离散值时,学习任务叫作分类。 预测是追是连...
阅读(209) 评论(0)

JS概述

JS概述@(JavaScript)语言核心两个重要的数据类型是: + 对象 + 数组对象:键值对集合var book = { topic:"Javascript", fat:true };对象属性的访问book.topic // Way 1 book["fat"] // Way 2赋值即创造这个在其他语言环境中是不常见的,目前只在JS中见过。book.author = "Flan...
阅读(150) 评论(0)

基于map函数生成星战片头动画

基于map函数生成星战片头动画@(Processing学习日记)–代码来自Daniel Shiffman前面讲过生成动画的基本原理,核心在于定义物体的移动控制。这个案例中,主要牵涉到的知识点有: translate(x,y)函数 map(value,start,end,low,upper)函数 translate(x,y)将坐标原点移动到指定的(x,y)点。这个函数是一种方便用法,如果不用这个函数也...
阅读(185) 评论(0)

Flask数据库学习

数据库学习@(Flask) 关系型数据库(SQL数据库) 文档数据库和键值对数据库 (NoSQL) SQL数据库表是关键。用表可以模拟程序中不同的实体。 主键:各行的唯一标识符。 外键:引用同一个表或不同表中的某行的主键。 表的列是固定的,所以这个可以对应到程序中的属性值。关系型数据库复杂的地方在于联表查询。NoSQL数据库一般使用集合代替表。 使用文档代替记录。NoSQL的设计方式使得联结变得困...
阅读(994) 评论(0)

Flask部署工具的安装与使用

部署工具的安装与使用@(Flask) Virtualenv Supervisor Virtualenv创建独立的Python运行环境解决问题 版本问题 依赖问题 权限问题: 不用管理员权限即可安装包 安装 pip install virtualenv使用 创建:virtualenv venv 激活:source venv/bin/activate 关闭:deactivate Supervisor进...
阅读(350) 评论(0)

Flask开发服务器

Flask开发服务器WSGI服务器: Gunicorn Gevent :基于协程 Tornado uWSGI CherryPy Flask天然的在底层支持Gevent,性能极佳。Web服务器:Nginx可以做反向代理,负载均衡。部署方案设计:HTTP请求进来,如果是静态文件,Nginx就把请求直接导入到文件系统,如果是需要走WSGI App进行处理的逻辑通过反向代理交给WSGI App....
阅读(370) 评论(0)

Flask之Web表单使用

Web表单使用@(Flask)request对象包含客户端发出的所有请求信息。request.form能获取POST请求中提交的表单数据。使用的包Flask-WTF可以把处理Web表单的过程变成愉快的体验。pip install flask-wtfCSRF:跨站请求伪造保护实现CSRF保护的方法:设置秘钥。简单的做法是写到代码中,但是这种做法不够安全最好是保存在环境变量中,这类技术后序会继续再谈。#...
阅读(1188) 评论(0)

Flask中的Jinja2模板使用

模板@(Flask)视图函数作用:生成请求的响应。一般情况下,请求会改变程序的状态,这种改变相应的需要在视图函数中产生。两种逻辑的处理 业务逻辑 表现逻辑 两种逻辑不分离将会使得代码难以理解和维护。Jinja2模板引擎模板是包含响应文本的文件。动态部分用占位变量表示,具体的值在请求的上下文中才能知道。渲染:使用真实值替代变量,返回最终的响应字符串。Flask用的是强大的Jinja2模板引擎。最简单的...
阅读(780) 评论(0)

Flask程序的基本结构

Flask程序的基本结构@(Flask)初始化程序实例是Flask类的对象。常常用的代码是:from flask import Flask app = Flask(__name__)Flask类的构造函数只有一个必须制定的参数:程序主模块或包的名字。 Flask用这个参数决定程序的根目录,以便稍后能找到相对于程序根目录的资源文件位置。 P.S : 后续会有更复杂些的初始化方式。路由和视图函数 客...
阅读(745) 评论(0)
405条 共21页1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:379430次
    • 积分:7808
    • 等级:
    • 排名:第2995名
    • 原创:403篇
    • 转载:1篇
    • 译文:1篇
    • 评论:129条
    博客专栏
    最新评论