高并发,大数据量,你的系统考虑哪些问题?

转载 2015年07月09日 16:42:08

高并发,大数据量,你的系统考虑哪些问题?

1,订票系统案例,某航班只有一张机票,假定有1w个人打开你的网站来订票,问你如何解决并发问题(可扩展到任何高并发网站要考虑的并发读写问题)

       问题,1w个人来访问,票没出去前要保证大家都能看到有票,不可能一个人在看到票的时候别人就不能看了。到底谁能抢到,那得看这个人的“运气”(网络快慢等)

      其次考虑的问题,并发,1w个人同时点击购买,到底谁能成交?总共只有一张票。

      首先我们容易想到和并发相关的几个方案 : 锁 同步

       同步更多指的是应用程序的层面,多个线程进来,只能一个一个的访问,java中指的是syncrinized关键字。 锁也有2个层面,一个是java中谈到的对象锁,用于线程同步;另外一个层面是数据库的锁;如果是分布式的系统,显然只能利用数据库端的锁来实现。

       假定我们采用了同步机制或者数据库物理锁机制,如何保证1w个人还能同时看到有票,显然会牺牲性能,在高并发网站中是不可取的。使用hibernate后我们提出了另外一个概念:乐观锁悲观锁(即传统的物理锁);采用乐观锁即可解决此问题。乐观锁意思是不锁定表的情况下,利用业务的控制来解决并发问题,这样即保证数据的并发可读性又保证保存数据的排他性,保证性能的同时解决了并发带来的脏数据问题。

      hibernate中如何实现乐观锁:

      前提:在现有表当中增加一个冗余字段,version版本号, long类型
      原理:1)只有当前版本号》=数据库表版本号,才能提交
                  2)提交成功后,版本号version ++

       实现很简单:在ormapping增加 一属性optimistic-lock="version"即可,以下是样例片段

<hibernate-mapping>
    <class name="com.insigma.stock.ABC" optimistic-lock="version" table="T_Stock" schema="STOCK">

 2,股票交易系统、银行系统,大数据量你是如何考虑的

首先,股票交易系统的行情表,每几秒钟就有一个行情记录产生,一天下来就有(假定行情3秒一个) 股票数量×20×60*6 条记录,一月下来这个表记录数量多大? oracle中一张表的记录数超过100w后 查询性能就很差了,如何保证系统性能?

   再比如,中国移动有上亿的用户量,表如何设计? 把所有用于存在于一个表么?

    所以,大数量的系统,必须考虑表拆分-(表名字不一样,但是结构完全一样),通用的几种方式:(视情况而定)

   1)按业务分,比如 手机号的表,我们可以考虑 130开头的作为一个表,131开头的另外一张表 以此类推

   2)利用oracle的表拆分机制做分表

  3)如果是交易系统,我们可以考虑按时间轴拆分,当日数据一个表,历史数据弄到其它表。这里历史数据的报表和查询不会影响当日交易。

当然,表拆分后我们的应用得做相应的适配。单纯的or-mapping也许就得改动了。比如部分业务得通过存储过程等

3)此外,我们还得考虑缓存

    这里的缓存,指的不仅仅是hibernate,hibernate本身提供了一级二级缓存。这里的缓存独立于应用,依然是内存的读取,假如我们能减少数据库频繁的访问,那对系统肯定大大有利的。比如一个电子商务系统的商品搜索,如果某个关键字的商品经常被搜,那就可以考虑这部分商品列表存放到缓存(内存中去),这样不用每次访问数据库,性能大大增加。

   简单的缓存大家可以理解为自己做一个hashmap,把常访问的数据做一个key,value是第一次从数据库搜索出来的值,下次访问就可以从map里读取,而不读数据库;专业些的目前有独立的缓存框架 比如memcached 等,可独立部署成一个缓存服务器。

高并发,大数据量,你的系统考虑哪些问题?

http://blog.sina.com.cn/s/blog_67cc72cc01012oa9.html 1,订票系统案例,某航班只有一张机票,假定有1w个人打开你的网站来订票,问你如何解决并发问题...
  • lvjin110
  • lvjin110
  • 2014年05月08日 12:05
  • 1415

高并发,大数据量,你的系统考虑哪些问题?

1,订票系统案例,某航班只有一张机票,假定有1w个人打开你的网站来订票,问你如何解决并发问题(可扩展到任何高并发网站要考虑的并发读写问题)        问题,1w个人来访问,票没出去前要保证大...
  • Li_work
  • Li_work
  • 2014年07月28日 16:08
  • 479

高并发,大数据量,你的系统考虑哪些问题?

1,订票系统案例,某航班只有一张机票,假定有1w个人打开你的网站来订票,问你如何解决并发问题(可扩展到任何高并发网站要考虑的并发读写问题)        问题,1w个人来访问,票没出去前要保证大...
  • Flood_Dragon
  • Flood_Dragon
  • 2013年02月07日 14:53
  • 317

高并发,大数据量,你的系统考虑哪些问题?

1,订票系统案例,某航班只有一张机票,假定有1w个人打开你的网站来订票,问你如何解决并发问题(可扩展到任何高并发网站要考虑的并发读写问题)        问题,1w个人来访问,票没出去前要保证大...
  • Lotes
  • Lotes
  • 2014年05月13日 13:47
  • 349

金钱兑换问题 动态规划 打印兑换后的硬币

有一个货币系统,有n 种硬币,每种硬币的面值为 v1,v2,……,vn, 且 v1 必定为 1 , 目的是兑换价值为 sum 的钱,让硬币数量最少。 result[ j ] 表示价值总钱为 j 的最...
  • u014311181
  • u014311181
  • 2015年11月11日 14:51
  • 298

大数据量快速处理的架构设计

在业务数据的处理过程中,经常会遇到夜间批次处理大量的数据,而且会有时效的要求。特别是当应用系统跑了2年以上时,就会有大表或者特大表的操作了,数据量达到百万甚至上亿。 这时回顾前期的设计,就会发现好多问...
  • c2406070418
  • c2406070418
  • 2017年03月12日 21:25
  • 269

大数据, 海量数据算法

原文地址:http://blog.sina.com.cn/s/blog_55ba8b4601012ken.html 第一部分、十道海量数据处理面试题 1、海量日志数据,提取出某日访问百度次数最...
  • libaolin198706231987
  • libaolin198706231987
  • 2015年12月30日 18:40
  • 1161

一次大数据量日志存储升级改造

现在我们处理日志的方案,一般比较成熟了,比如kafka elasticsearch这些技术,随着时间的前进,日志量也是暴涨,那么对我们的存储方案就是一个挑战,今天来说下我们遇到的问题及方案的调整。...
  • wangxindong11
  • wangxindong11
  • 2016年12月12日 19:25
  • 1022

hive 大数据量 参数设置

hive> set mapred.map.output.compression.codec=org.apache.hadoop.io.compress.SnappyCodec; hive> set m...
  • nihaoma_ff
  • nihaoma_ff
  • 2017年05月02日 10:46
  • 223

大数据量数据库优化

一、数据库结构的设计    如果不能设计一个合理的数据库模型,不仅会增加客户端和服务器段程序的编程和维护的难度,而且将会影响系统实际运行的性能。所以,在一个系统开始实施之前,完备的数据库模型的设计是必...
  • hawk140
  • hawk140
  • 2016年08月28日 11:47
  • 850
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:高并发,大数据量,你的系统考虑哪些问题?
举报原因:
原因补充:

(最多只允许输入30个字)