列空间和零空间

转载 2015年07月07日 16:30:55

特别关注矩阵的列空间和零空间

回忆什么是向量空间:就是一些向量,对一些运算封闭,空间内任何向量相加(加法),结果仍在空间内,或用空间内任意向量乘以常数(数乘),结果仍在空间内,即加法和数乘都是封闭的,那么线性组合必然也是封闭的。一种更简单的描述方法:所有线性组合,即任意倍的向量v与任意倍的向量w之和,仍在空间中。向量空间必包含原点。
什么是子空间:向量空间内的一些向量,它们属于母空间,但自身又构成向量空间,即,子空间是向量空间内的向量空间。任意两个子空间的交集S∩T仍然是子空间。

我们来看两个核心的子空间
一、矩阵列空间
如下例子,A的列空间是R4的子空间,记为C(A),抽象起来:A的列空间由A三个列向量的线性组合组合构成
 
这个空间到底是什么样子?它等于整个四维空间吗?不等于,它只是相当于四维空间的一个较小的空间。

抽象背后的实际目的,都是为了深刻认识Ax=b,Ax=b是否对任意b(右侧向量)都有解?或者说,什么样的b使方程组有解?
Ax=b对任意b并不总有解,因为Ax=b中有四个方程,却只有三个未知数。方程组不总有解,因为3个列向量的线性组合无法充满整个四维空间,因此还有一大堆的b不是这三个列向量的线性组合。
但有时候是有解的,怎样的b,能让方程组有解,什么样的右侧向量有这种性质?什么b让方程组有解?(很重要)
1)b为零向量。Ax=0总有一个零解
2)b是列向量的线性组合。Ax=b有解,当且仅当右侧向量b属于A的列空间。(列空间包含所有A乘以任意x得到的向量,也就是包含所有有解的b)
列空间是非常核心的内容,它能告诉我何时方程组有解。

更深入一些的问题,以上三个列向量是否线性无关,是否有某个向量并没有起到作用,能否去掉某列,得到同样的列空间?上面的A,其实可以去掉第三列,因为第三列是前两列的和线性组合,我们把前两列称为A的主列。其实,我们同样可以去掉第一列或者第二列,因为他们是其余两列的差线性组合。不过按照惯例,优先考虑靠前的线性无关向量。因此这里的A列空间可以描述为R4的二维子空间。

二、另一种向量空间——零空间Null space
零空间是一种完全不同的子空间。还是看上面A矩阵的例子
零空间中的关键字是:零,因此它包含Ax=0中所有的解x。现在关心的b只有一个,即b=0。
因为x是3分量向量,因此本例零空间是R3的子空间(注意A列空间是R4子空间)。矩阵m×n,有n个列,即有n个未知数,以上为A4×3。

求解零空间
一般方法为消元法。但上式的解很容易看出来
怎样描述这个零空间,这里的零空间是R3中穿过原点的一条直线。

回顾向量空间和子空间定义,我们怎么知道零空间是向量空间的,为什么它称为“空间”。
检验:Ax=0的解构成一个子空间,需要证明解满足空间的封闭规则,证明如下:

如下,考虑另外一个问题,右侧b向量取一个非0向量,此时x有解,(这时x的解不是零空间了),那么所有的x解构成子空间吗?很明显不构成子空间,或者说向量空间。因为很明显0向量不在这个空间内,没有0向量,就不用谈向量空间了(原因很明显,数乘运算中,常数取0时需要满足封闭规则)。
那么它的解是什么?(1 0 0),(0 -1 -1)。。。它实际上是一条不穿过原点的直线(或者在别的更普通的例子中是不穿过原点的平面)

以上两种子空间的总结:有两种方法构造子空间,其一是通过列的线性组合构造列空间,其二是求解向量必须满足的方程组来构造子空间(通过让x满足特定条件来得到子空间,Ax=0将构造出零空间)

线性代数导论6——列空间和零空间

本文是Gilbert Strang的线性代数导论课程笔记。课程地址:http://v.163.com/special/opencourse/daishu.html   第六课时:列空间和零空间 ...

线性代数(十) : 矩阵的列空间与零空间

列空间和零空间可以用来求解一个线性映射的值域以及讨论线性方程组解的情况以及可逆性 0 本节用到的概念: 线性组合,子空间 线性映射 1 矩阵与列向量 一个矩阵乘一个列向量可以理解为这个矩阵中...

列空间(column space)和零空间(null space)

上一篇中简单介绍了向量空间(vector space)和子空间(subspace),也知道了R3有4个子空间:R3本身,过原点的平面,过原点的直线以及单独的零向量。现假设过原点的面为P,过原点的直线为...
  • xdfyoga1
  • xdfyoga1
  • 2014年07月01日 11:55
  • 12940

线性代数导论6——列空间和零空间

本文是Gilbert Strang的线性代数导论课程笔记。课程地址:http://v.163.com/special/opencourse/daishu.html   第六课时:列空间和零空间 ...
  • aihali
  • aihali
  • 2015年04月15日 21:28
  • 410

线性代数:零空间维度等于自由变量个数的原因

①以下展开的论述均以下图的矩阵为例                 ②上述矩阵特征:2个主变量,2个自由变量 ③该矩阵零空间的构成: 形式化的理解:在AX=0的条件下,对2个自由变量任意赋值,求得对应...

【线性代数】矩阵的零空间

矩阵A的零空间就Ax=0的解的集合。 零空间的求法:对矩阵A进行消元求得主变量和自由变量;给自由变量赋值得到特解;对特解进行线性组合得到零空间。 假设矩阵如下: 对矩阵A进行高斯消元得到上三角矩阵...

向量空间,子空间,列空间,零空间(PartIII)

目录: vector space (向量空间) subspace space (子空间) 由Ax=bAx=b理解column space (列空间) 由Ax=0Ax=0理解null space(零空间...

仿qq空间列表

  • 2015年09月08日 16:55
  • 205KB
  • 下载

.net命名空间解释列表

  • 2010年04月19日 10:46
  • 51KB
  • 下载

Python3.6获取QQ空间全部好友列表

首先要处理的是gtk算法:从上次分析以来代码并没有变 登录QQ空间后搜索gtk字符串,在三个js中出现了 operation.50303.js gdtlib.20160810.js index.js ...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:列空间和零空间
举报原因:
原因补充:

(最多只允许输入30个字)