关闭

推荐系统_随记

519人阅读 评论(0) 收藏 举报
分类:

       一、个性化推荐的成功应用需要两个条件。第一是存在信息过载,因为如果用户可以很容易地从所有物品中找到喜欢的物品,就不需要个性化推荐了。第二是用户大部分时候没有特别明确的需求,因为用户如果有明确的需求,可以直接通过搜索引擎找到感兴趣的物品。

      二、同现矩阵可以看成是用户给出的物品与物品之间的相似程度,将用户的联合购买行为(认同行为)理解为两件物品的相似程度,而用户评价就是用户偏好,那么  相似性×用户偏好=潜在的用户偏好。同理,基于物品属性的近邻算法核心思想也是如此。

    三、最近在学习推荐系统,想问下,有没有在bat做过类似的工作的朋友。计算物品相似度是用什么来写的?是直接拿mapreduce或spark通过余弦或者同现矩阵的方式实现的吗?还是用mahout写的呢?坐等--------------------通过这个说明了同现矩阵属于计算相似度的一种。 https://www.zhihu.com/question/36758695

      四、随着Netflix Prize推荐比赛的成功举办,近年来隐语义模型(Latent Factor Model, LFM)受到越来越多的关注。隐语义模型最早在文本挖掘领域被提出,用于寻找文本的隐含语义,相关的模型常见的有潜在语义分析(Latent Semantic Analysis, LSA)、LDA(Latent Dirichlet Allocation)的主题模型(Topic Mdel),矩阵分解(Matrix Factorization)等等。其中矩阵分解技术是实现隐语义模型使用最为广泛的一种方法,其思想也正是来源于此,著名的推荐领域大神Yehuda Koren更是凭借矩阵分解模型勇夺Netflix Prize推荐比赛冠军,以矩阵分解为基础,Yehuda Koren在数据挖掘和机器学习相关的国际顶级会议(SIGIR,SIGKDD,RecSys等)发表了很多文章,将矩阵分解模型的优势发挥得淋漓尽致。实验结果表明,在个性化推荐中使用矩阵分解模型要明显优于传统的基于邻域的协同过滤(又称基于记忆的协同过滤)方法,如UserCF、ItemCF等,这也使得矩阵分解成为了目前个性化推荐研究领域中的主流模型。

          需要说明的是,协同过滤方法分为两大类,一类为上述基于领域(记忆)的方法,第二类为基于模型的方法,即隐语义模型,矩阵分解模型是隐语义模型最为成功的一种实现,不作特别说明的情况下,本文将隐语义模型和矩阵分解看作同一概念,User-Item矩阵和User-Item评分矩阵为同一概念。

         另外,奇异值分解(Singular Value Decomposition, SVD),非负矩阵分解(Non-negative Matrix Factorization, NMF),概率矩阵分解(Probability Matrix Factorization, PMF)等方法虽然也使用矩阵分解的思想,属于矩阵分解的范畴,但是其分解方法和本文有所不同,这些不是本文的讨论重点,我会在今后的博文中逐一进行讲解。http://baogege.info/2014/10/19/matrix-factorization-in-recommender-systems/



相似度算法:

1)同现相似度   

2)欧氏距离相似度

3)余弦相似度

4)秩相关系数相似度

5)曼哈顿距离相似度

6)对数似然相似度


常见的推荐系统算法:

         关联规则;

                   Apriori

                   FPGrowth

         协同过滤

                 基于邻域的方法

                       基于用户的协同过滤算法

                       基于物品的协同过滤算法

                 隐语义模型



0
0
查看评论
发表评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场

推荐系统方法概览

1>基于用户属性的推荐:根据系统用户的基本信息发现用户的相关程度,然后将相似用户喜爱的其他物品推荐给当前用户。系统首先会根据用户的属性建模,比如用户的年龄,性别,兴趣等信息。根据这些特征计算用户间的相...
  • xwd18280820053
  • xwd18280820053
  • 2017-07-24 11:24
  • 534

推荐系统入门

1. 推荐系统的意义\quad互联网大爆炸时期的信息过载的解决方案:\quad对用户而言:找到好玩的东西,帮助决策,发现新鲜事物。 \quad对商家而言:提供个性化服务,提高信任度和粘性,增加营收。...
  • taoyanqi8932
  • taoyanqi8932
  • 2017-03-14 21:33
  • 7609

推荐系统简介

随着信息技术和互联网的发展,人们逐渐从信息匮乏的时代走入了信息过载(information overload)的时代。在这个时代,无论是信息消费者还是信息生产者都遇到了很大的挑战。         对...
  • DQ_DM
  • DQ_DM
  • 2014-10-03 15:46
  • 3210

推荐系统面临的问题

1 推荐算法的鲁棒性 由于推荐系统能够影响用户的购买行为,带来经济效益,因此越来越多的恶意用户设法通过影响推荐系统的行为来控制推荐系统以实现提高物品销量,损坏竞争对手利益,甚至破坏系统使其无法产...
  • u013749540
  • u013749540
  • 2016-11-13 10:20
  • 3206

推荐系统知识点整理

  • GRAVEALL
  • GRAVEALL
  • 2016-12-06 10:46
  • 688

《推荐系统实践》(一)好的推荐系统

什么是推荐系统 个性化推荐系统的应用 电子商务 电影和视频网站 个性化音乐网络电台 社交网络 个性化阅读 基于位置的服务 个性化邮件 个性化广告 推荐系统评测 推荐系统的试验方法 离线实验 用户调查 ...
  • lixintong1992
  • lixintong1992
  • 2016-01-08 16:52
  • 2743

推荐系统架构

推荐系统(RecSys)作为电子商务中一个很火的应用,主要是为了帮助用户发现可能感兴趣的东西,这种就叫做个性化推荐系统;而广告商还可以利用结果将内容投放给可能会对它们感兴趣的用户,这就成了个性化广告。...
  • abv123456789
  • abv123456789
  • 2015-08-19 20:48
  • 2955

推荐系统_基于内容的推荐

基于内容的推荐 基于标签的推荐 隐语义模型
  • u011263983
  • u011263983
  • 2016-05-26 17:44
  • 5752

推荐系统(一) —— 好的推荐系统

ML方向初步计划学习下推荐系统,感谢灵哥和宇哥推荐的书——《推荐系统实践》,书一到手,迫不及待的就把第一章看完了,感觉确实很有意思,值得投入去学习。本书并没有打算写成handbook式的巨著或者事无巨...
  • lipengcn
  • lipengcn
  • 2016-04-16 12:21
  • 7659

推荐系统--揭开推荐的神秘面纱

推荐,就是把你可能喜欢的商品,推到你的面前。构建一个推荐系统,就是构建如何把商品推到你面前的过程。 推荐是一个整体的计算过程,在编码中,关于算法的部分所占的工作量可能1%都不到; 构建一个千万PV级别...
  • puma_dong
  • puma_dong
  • 2014-08-30 12:38
  • 3159
    个人资料
    • 访问:35103次
    • 积分:556
    • 等级:
    • 排名:千里之外
    • 原创:21篇
    • 转载:0篇
    • 译文:0篇
    • 评论:6条
    最新评论
  • 面试

    u011263983: @haungzhuwei:还没有毕业啊,还有一年。本科学的是网络工程,研究生学的大数据,主要偏向于大...

  • 面试

    haungzhuwei: 楼主,你是刚大学毕业出来找工作的吗?而且是本科自学机器方面的知识?

  • 面试

    u011263983: 58面试:自我介绍。hadoop中mapreduce的架构,项目介绍,这个问的比较细,怎么设计的(h...

  • 面试

    u011263983: 网易面试(网易云音乐-大数据开发 2017.8.28)1面1,自我介绍2,介绍一下hadoop3,介...

  • 面试

    u011263983: 绿盟 7:LR和SVM的区别?答:1:损失函数不同2:SVM有约束,LR没有3:SVM仅仅考虑支持向...

  • 面试

    u011263983: 绿盟一面:1:说说你了解的机器学习算法?线性回归,逻辑回归,svm,感知机,决策树,随机森林,聚类:...