第6章 马尔可夫法(PageRank的孩子) 实例和程序

原创 2015年07月10日 20:16:00

 

            马尔可夫法的主要思想是:两支队伍之间的每次较量,都是弱队给强队投票的机会。举个例子如下:

           设投票矩阵V中第 i 行,第 j 列的元素是vij,vij表示队伍 i 输给了队伍 j 。

 

           V中的各行进行归一化,得到矩阵N

 

           矩阵N中第二行全为0,这与悬挂结点问题类似。网页排名领域中,悬挂结点指的是没有出链的结点。解决这个问题的一种方法是将这一行的元素赋值为 1/n ,n为矩阵的行数。由此可以得到随机矩阵S

 

           将矩阵S转置,得到转移概率矩阵W。和PageRank算法相似,我们需要计算出这个随机矩阵W的稳态向量。该稳态向量即为W的主特征向量r,可以通过Wr = r来得到。

 

为了加深记忆,我动手实现了马尔可夫法,程序如下:

#include <cstdio> 
#include <cmath> 
int main()
{
	const int n = 5;
	double V[][n] = {{0,1,1,1,1}, {0,0,0,0,0}, {0,1,0,0,1}, {0,1,1,0,1}, {0,1,0,0,0}};
	/* 归一化 */
	double N[n][n];
	double rowSum[n] = {0.0};
	int i, j;
	for(i = 0; i < n; i++) {
		for(j = 0; j < n; j++) {
			rowSum[i] += V[i][j];
		}
	}
	for(i = 0; i < n; i++) {
		for(j = 0; j < n; j++) {
			if(rowSum[i] > 0) {
				N[i][j] = V[i][j] / rowSum[i];
			} else {
				N[i][j] = 0.0;
			}
		}
	}
	/* 处理悬挂结点问题 */
	double S[n][n];
	for(i = 0; i < n; i++) {
		for(j = 0; j < n; j++) {
			if(rowSum[i] > 0) {
				S[i][j] = V[i][j] / rowSum[i];
			} else {
				S[i][j] = 1.0 / n;
			}
		}
	}
	/* 将矩阵S转置,得到转移概率矩阵W */
	double W[n][n];
	for(i = 0; i < n; i++) {
		for(j = 0; j < n; j++) {
			W[i][j] = S[j][i];
		}
	}
	/* 初始化评分向量r */
	double r[n];
	for(i = 0; i < n; i++) {
		r[i] = 1.0 / n;
	}
	/* 用幂法迭代计算评分向量r */
	double ep = 0.00000000001;
	double maxBias;
	double rNew[n];
	do {
		maxBias = 0.0;
		for(i = 0; i < n; i++) {
			rNew[i] = 0.0;
			for(j = 0; j < n; j++) {
				rNew[i] += W[i][j] * r[j];
			}
		}
		for(i = 0; i < n; i++) {
			if(fabs(rNew[i] - r[i]) > maxBias)
				maxBias = fabs(rNew[i] - r[i]);
			r[i] = rNew[i];
		}
	}while(maxBias > ep);

	for(i = 0; i < n; i++) {
		printf("%d: %.3lf\n", i, r[i]);
	}
	return 0;
}

 

运行结果为:

所以,5只队伍的得分依次为0.088,0.438,0.146, 0.109, 0.219 。

 

版权声明:本文为博主原创文章,未经博主允许不得转载。

12.1、PageRank实例

实例一:PageRank在R中的应用 1、加载R包: > library(igraph) > library(dplyr)   2、随机生成具有10个对象的有向图: > g igrap...
  • qq_16365849
  • qq_16365849
  • 2016年02月12日 09:54
  • 818

Google 的秘密- PageRank 彻底解说 中文版(二)

5. Namazu 上的实际安装实验 为了使更简单地推测上文描述的问题,PageRank并不是非世界所有的web页面而不能使用的考虑方法,即使是个人的利用方法也能实现。为了实现「Personaliz...
  • Joe_study
  • Joe_study
  • 2015年01月09日 20:06
  • 710

PageRank算法在spark上的简单实现

在《Spark快速大数据分析》里有一段不明觉厉的Scala代码,只用了区区几行即实现了Google的PageRank算法,于是照猫画虎做了个小实验验证了一下。 一、实验环境 spark 1.5.0 ...
  • wzy0623
  • wzy0623
  • 2016年05月12日 13:02
  • 5295

PageRank算法(python实现)

Python 实现的PageRank算法,纯粹使用python原生模块,没有使用numpy、scipy。
  • nersleGmail
  • nersleGmail
  • 2015年03月02日 21:46
  • 2738

PageRank算法并行实现

算法为王系列文章,涵盖了计算机算法,数据挖掘(机器学习)算法,统计算法,金融算法等的多种跨学科算法组合。在大数据时代的背景下,算法已经成为了金字塔顶的明星。一个好的算法可以创造一个伟大帝国,就像Goo...
  • GarfieldEr007
  • GarfieldEr007
  • 2016年03月14日 19:32
  • 900

使用scala实现pageRank算法

使用scala实现pageRank算法 使用scala实现pageRank算法 使用scala实现pageRank算法 使用scala实现pageRank算法...
  • ldds_520
  • ldds_520
  • 2016年06月02日 19:38
  • 1112

推荐算法:基于图的算法:pagerank

基本模型*随机游走模型 针对浏览网页的用户行为建立的抽象模型 直接跳转:打开浏览器,输入网址,然后根据链接跳转转移概率矩阵 则可以组织这样一个N维矩阵:其中i行j列的值表示用户从页面j转到页面i的概...
  • mijian1207mijian
  • mijian1207mijian
  • 2016年06月15日 23:27
  • 1934

浅析PageRank算法

转载自http://blog.jobbole.com/23286/
  • hcx25909
  • hcx25909
  • 2014年07月24日 21:47
  • 2757

PageRank算法及Java代码实现(代码有详解)

package org.jazz; import java.io.BufferedReader; import java.io.FileReader; import java.io.IOExce...
  • badboy_1990
  • badboy_1990
  • 2014年07月23日 14:09
  • 1437

PageRank算法--从原理到实现

PageRank 算法标签: PageRank Markov MapReduce本文将介绍PageRank算法的相关内容,具体如下:PageRank 算法 算法来源 算法原理 算法证明 PR值计算方法...
  • rubinorth
  • rubinorth
  • 2016年08月15日 21:40
  • 5994
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:第6章 马尔可夫法(PageRank的孩子) 实例和程序
举报原因:
原因补充:

(最多只允许输入30个字)