第6章 马尔可夫法(PageRank的孩子) 实例和程序

原创 2015年07月10日 20:16:00

 

            马尔可夫法的主要思想是:两支队伍之间的每次较量,都是弱队给强队投票的机会。举个例子如下:

           设投票矩阵V中第 i 行,第 j 列的元素是vij,vij表示队伍 i 输给了队伍 j 。

 

           V中的各行进行归一化,得到矩阵N

 

           矩阵N中第二行全为0,这与悬挂结点问题类似。网页排名领域中,悬挂结点指的是没有出链的结点。解决这个问题的一种方法是将这一行的元素赋值为 1/n ,n为矩阵的行数。由此可以得到随机矩阵S

 

           将矩阵S转置,得到转移概率矩阵W。和PageRank算法相似,我们需要计算出这个随机矩阵W的稳态向量。该稳态向量即为W的主特征向量r,可以通过Wr = r来得到。

 

为了加深记忆,我动手实现了马尔可夫法,程序如下:

#include <cstdio> 
#include <cmath> 
int main()
{
	const int n = 5;
	double V[][n] = {{0,1,1,1,1}, {0,0,0,0,0}, {0,1,0,0,1}, {0,1,1,0,1}, {0,1,0,0,0}};
	/* 归一化 */
	double N[n][n];
	double rowSum[n] = {0.0};
	int i, j;
	for(i = 0; i < n; i++) {
		for(j = 0; j < n; j++) {
			rowSum[i] += V[i][j];
		}
	}
	for(i = 0; i < n; i++) {
		for(j = 0; j < n; j++) {
			if(rowSum[i] > 0) {
				N[i][j] = V[i][j] / rowSum[i];
			} else {
				N[i][j] = 0.0;
			}
		}
	}
	/* 处理悬挂结点问题 */
	double S[n][n];
	for(i = 0; i < n; i++) {
		for(j = 0; j < n; j++) {
			if(rowSum[i] > 0) {
				S[i][j] = V[i][j] / rowSum[i];
			} else {
				S[i][j] = 1.0 / n;
			}
		}
	}
	/* 将矩阵S转置,得到转移概率矩阵W */
	double W[n][n];
	for(i = 0; i < n; i++) {
		for(j = 0; j < n; j++) {
			W[i][j] = S[j][i];
		}
	}
	/* 初始化评分向量r */
	double r[n];
	for(i = 0; i < n; i++) {
		r[i] = 1.0 / n;
	}
	/* 用幂法迭代计算评分向量r */
	double ep = 0.00000000001;
	double maxBias;
	double rNew[n];
	do {
		maxBias = 0.0;
		for(i = 0; i < n; i++) {
			rNew[i] = 0.0;
			for(j = 0; j < n; j++) {
				rNew[i] += W[i][j] * r[j];
			}
		}
		for(i = 0; i < n; i++) {
			if(fabs(rNew[i] - r[i]) > maxBias)
				maxBias = fabs(rNew[i] - r[i]);
			r[i] = rNew[i];
		}
	}while(maxBias > ep);

	for(i = 0; i < n; i++) {
		printf("%d: %.3lf\n", i, r[i]);
	}
	return 0;
}

 

运行结果为:

所以,5只队伍的得分依次为0.088,0.438,0.146, 0.109, 0.219 。

 

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

小波隐马尔可夫去噪的matlab程序

  • 2009年05月12日 11:22
  • 258KB
  • 下载

隐马尔可夫模型前向法的推导及使用

关于隐马尔可夫模型以及
  • achitc
  • achitc
  • 2014年09月09日 16:52
  • 1699

马尔可夫(MRF)分割的C++程序

  • 2012年03月23日 14:58
  • 486KB
  • 下载

马尔可夫聚类算法(MCL)

1.基础 1.1Random Walks 在图中,通过Random Walks处理,可以找到数据在哪里聚集,或者聚簇在哪。 图中的Random Walks是使用马尔可夫链计算求出。 1.2马尔可夫...

序列的算法(一·a)马尔可夫模型

序列的世界(一.a)序言机器学习领域往往按照算法的应用分为各大领域,如NLP、CV、MT等等,一些算法往往也被打上各自应用的标签,但其实对于算法本身而言,只要你能按照他指定的格式输入数据,就能够产出相...

马尔可夫链

  • 2014年07月15日 10:35
  • 130KB
  • 下载
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:第6章 马尔可夫法(PageRank的孩子) 实例和程序
举报原因:
原因补充:

(最多只允许输入30个字)