【noip】Mayan游戏 搜索

原创 2016年08月30日 19:33:33

描述

Mayan puzzle是最近流行起来的一个游戏。游戏界面是一个7行5列的棋盘,上面堆放着一些方块,方块不能悬空堆放,即方块必须放在最下面一行,或者放在其他方块之上。游戏通关是指在规定的步数内消除所有的方块,消除方块的规则如下:
1、每步移动可以且仅可以沿横向(即向左或向右)拖动某一方块一格:当拖动这一方块时,如果拖动后到达的位置(以下称目标位置)也有方块,那么这两个方块将交换位置(参见图6到图7);如果目标位置上没有方块,那么被拖动的方块将从原来的竖列中抽出,并从目标位置上掉落(直到不悬空,参见图1和图2);
图片
2、任一时刻,如果在一横行或者竖列上有连续三个或者三个以上相同颜色的方块,则它们将立即被消除(参见图1到图3)。
注意:
a) 如果同时有多组方块满足消除条件,几组方块会同时被消除(例如下面图4,三个颜色为1的方块和三个颜色为2的方块会同时被消除,最后剩下一个颜色为2的方块)。
b) 当出现行和列都满足消除条件且行列共享某个方块时,行和列上满足消除条件的所有方块会被同时消除(例如下面图5所示的情形,5个方块会同时被消除)。
图片
3、方块消除之后,消除位置之上的方块将掉落,掉落后可能会引起新的方块消除。注意:掉落的过程中将不会有方块的消除。
上面图1到图3给出了在棋盘上移动一块方块之后棋盘的变化。棋盘的左下角方块的坐标为(0, 0),将位于(3, 3)的方块向左移动之后,游戏界面从图1变成图2所示的状态,此时在一竖列上有连续三块颜色为4的方块,满足消除条件,消除连续3块颜色为4的方块后,上方的颜色为3的方块掉落,形成图3所示的局面。

格式

输入格式

第一行为一个正整数n,表示要求游戏关的步数。
接下来的5行,描述7*5的游戏界面。每行若干个整数,每两个整数之间用一个空格隔开,每行以一个0 结束,自下向上表示每竖列方块的颜色编号(颜色不多于10种,从1开始顺序编号,相同数字表示相同颜色)。
输入数据保证初始棋盘中没有可以消除的方块。

输出格式

如果有解决方案,输出n行,每行包含3个整数x,y,g,表示一次移动,每两个整数之间用一个空格隔开,其中(x,y)表示要移动的方块的坐标,g表示移动的方向,1表示向右移动,-1表示向左移动。注意:多组解时,按照x为第一关键字,y为第二关键字,1优先于-1,给出一组字典序最小的解。游戏界面左下角的坐标为(0, 0)。
如果没有解决方案,输出一行,包含一个整数-1。

样例

样例输入

3
1 0
2 1 0
2 3 4 0
3 1 0
2 4 3 4 0

样例输出

2 1 1
3 1 1
3 0 1

限制

3s

提示

图片
样例输入的游戏局面如图6到图11所示。依次移动的三步是:(2,1)处的方格向右移动,(3,1)处的方格向右移动,(3,0)处的方格向右移动,最后可以将棋盘上所有方块消除。
数据规模如下:
对于30%的数据,初始棋盘上的方块都在棋盘的最下面一行;
对于100%的数据,0 < n ≤ 5。

来源

NOIP2011提高组Day1第三题

在写这个什么mayan游戏前先吐槽一下名字…
不污不污


好,我们来说这道题。
这个一看才5*7应该就是一个搜索的题,搜索是确定了那么我们就来考虑怎么剪枝。
剪枝有以下三种方式
1、如果在某个状态一个颜色只有两块或者一块那么这个状态一定不可能到达全效的状态,剪掉。(然后再说一点,这个剪枝是最重要的一个剪枝,然后还有一个就是判断颜色不能每个点扫一片,不然还是要T,要先存起来)
2、除非左边是空气,不向左边走(这个应为已近走过这种交换方式了)
3、最后一个就是一样的方块不换
然后深搜,就是直接剪枝暴力搜,思路其实非常简单,但是写起来错了真的不好调,太恶心了
下面是我的程序,调了好久

#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<set>
#include<queue>
#include<algorithm>
#include<vector>
#include<cstdlib>
#include<cmath>
#include<ctime>
#include<stack>
#define INF 2100000000
#define ll long long
#define clr(x)  memset(x,0,sizeof(x));

using namespace std;

int n;

struct mayan
{
    int n[5][7];
    int color[11];
}m;

inline void drop(mayan &a)
{
    for(int i=0;i<=4;i++)
        for(int j=0;j<=6;j++)
            if(a.n[i][j]==0)
                for(int k=j+1;k<=6;k++)
                    if(a.n[i][k]!=0)
                    {
                        a.n[i][j]=a.n[i][k];
                        a.n[i][k]=0;
                        break;
                    }
}

inline void clear(mayan &a)
{
    int b[5][7],can=0;
    clr(b);
    drop(a);
    for(int i=0;i<=2;i++)
        for(int j=0;j<=6;j++)
            if(a.n[i][j]!=0&&a.n[i][j]==a.n[i+1][j]&&a.n[i+1][j]==a.n[i+2][j])
            {
                b[i][j]=b[i+1][j]=b[i+2][j]=1;
                can=1;
            }

    for(int i=0;i<=4;i++)
        for(int j=0;j<=4;j++)
            if(a.n[i][j]!=0&&a.n[i][j]==a.n[i][j+1]&&a.n[i][j+1]==a.n[i][j+2])
            {
                b[i][j]=b[i][j+1]=b[i][j+2]=1;
                can=1;
            }       
    for(int i=0;i<=4;i++)
        for(int j=0;j<=6;j++)
            if(b[i][j])
            {
                a.color[a.n[i][j]]--;
                a.n[i][j]=0;
            }   
    drop(a);
    if(can)clear(a);
}

bool check(mayan m)
{
    for(int i=1;i<=10;i++)
        if(m.color[i]<=2&&m.color[i]>0)
            return 1;
    return 0;
}

bool bingo(mayan m)
{
    for(int i=1;i<=10;i++)
        if(m.color[i]!=0)
            return 0;
    return 1;
}

struct node
{
    int x,y,pos;
    node(int x=0,int y=0,int pos=0):x(x),y(y),pos(pos){}
};
stack<node>S;

inline void dfs(int x)
{
    if(x==n)
    {
        if(bingo(m))
        {
            stack<node>T;
            while(!S.empty())
            {
                T.push(S.top());S.pop();

            }
            while(!T.empty())
            {
                node temp=T.top();T.pop();
                printf("%d %d %d\n",temp.x,temp.y,temp.pos);
            }
            exit(0);
        }
        return ;
    }
    mayan ori=m;
    for(int i=0;i<=4;i++)
        for(int j=0;j<=6;j++)
        {
            if(!m.n[i][j])continue;
            if(i<4&&m.n[i][j]!=m.n[i+1][j])
            {
                swap(m.n[i+1][j],m.n[i][j]);
                clear(m);
                if(!check(m))
                {
                    S.push(node(i,j,1));
                    dfs(x+1);
                    S.pop();
                }
                m=ori;
            }
            if(i>0&&!m.n[i-1][j]&&m.n[i][j]!=m.n[i-1][j])
            {
                swap(m.n[i-1][j],m.n[i][j]);
                clear(m);
                if(!check(m))
                {
                    S.push(node(i,j,-1));
                    dfs(x+1);
                    S.pop();
                }
                m=ori;
            }
        }
}

int main()
{
    freopen("mayan.in","r",stdin);
    freopen("mayan.out","w",stdout);
    clr(m.color);clr(m.n);
    cin>>n;
    for(int i=0;i<=4;i++)
        for(int j=0;j<=7;j++)
        {
            scanf("%d",&m.n[i][j]);
            if(m.n[i][j]==0)break;
            m.color[m.n[i][j]]++;
        }
    clear(m);
    dfs(0);
    cout<<-1;
    return 0;
}

大概就是这个样子,如果有什么问题,或错误,请在评论区提出,谢谢。

版权声明:蒟蒻博客,转载注明出处

相关文章推荐

NOIP2011 Mayan游戏(搜索)

第一反应是搜索题,想了一下如果用BFS的话,由于状态过多,可能超内存,因此我用的DFS。 这里我们讨论一下剪枝条件: 如果当前状态有一种颜色的数量小于3,那么这种颜色就无法被消除,因此我们可以提前退出...
  • cqbzwja
  • cqbzwja
  • 2015年08月06日 21:37
  • 2558

【dfs搜索】NOIP2011day3 Mayan游戏

据说这是noip中最难的搜索题…… 很明显是一个搜索。然而我竟以为是ID搜索,无限TLE %>_ 至于实现起来比较难的部分就是掉落和消除了。这两个函数会调用很多次,写丑了会无限TLE的… 消除函数...
  • cqbztsy
  • cqbztsy
  • 2015年08月08日 12:06
  • 1614

[NOIP 2011] Mayan游戏:搜索,模拟

题意:寻找一个用n步(0<n

noip2011 day1-3 Mayan游戏

Mayan puzzle是最近流行起来的一个游戏。游戏界面是一个 7 行5 列的棋盘,上面堆放着一些方块,方块不能悬空堆放,即方块必须放在最下面一行,或者放在其他方块之上。游戏通关是指在规定的步数内消...

NOIP 2011 题解 铺地毯 选择客栈 Mayan 游戏

大家都很强,可与之共勉大白兔的奶糖’s T 解T11.铺地毯 (carpet.cpp/c/pas) 【问题描述】 为了准备一个独特的颁奖典礼,组织者在会场的一片矩形区域(可看做是平面直角坐标 ...

noip2011提高组——mayan游戏

这道题看了 除了暴力dfs  +模拟 真的找不到其他思路了 再一看 dfs深度最多才5  棋盘7 *5  业界良心。。 而且格子也只有左右移动 暴力dfs  就是干。。。 当然纯暴力当然不行的  ...

猥琐的暴搜 NOIP2011 Mayan游戏

题目描述 Mayan puzzle是最近流行起来的一个游戏。游戏界面是一个 7 行5 列的棋盘,上面堆放着一些方块,方块不能悬空堆放,即方块必须放在最下面一行,或者放在其他方块之上。游戏通关是指在规定...

Noip 2011 解题报告 Day1 (铺地毯,选择客栈,Mayan 游戏)

前言在这春暖花开的日子,我们迎来了又一次的模拟测试。这一次,我们采用了2011年的Day1真题作为题目。...
  • Hawo11
  • Hawo11
  • 2017年03月11日 14:33
  • 434

NOIP 2011 DAY 1 解题报告(铺地毯,选择客栈,mayan游戏)

NOIP 2011

noip提高组2011 mayan游戏

这题主要难点不在搜索,而在如何消除联通的块和让快掉落,搜索还是挺好写的,还可以在搜的时后加个剪枝:若有一种颜色块只有一或两块,直接return #include #include #include...
  • lrj124
  • lrj124
  • 2017年04月21日 14:36
  • 126
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:【noip】Mayan游戏 搜索
举报原因:
原因补充:

(最多只允许输入30个字)