关闭

FZU - 1896 神奇的魔法数

782人阅读 评论(0) 收藏 举报
分类:

Description

John定义了一种“神奇的魔法数”。 不含前导零且相邻两个数字之差至少为m的正整数被称为“神奇的魔法数”。特别的,对于任意的m,数字1..9都是“神奇的魔法数”。
John想知道,对于给定的m,在正整数a和b之间,包括a和b,总共有多少个“神奇的魔法数”?

Input

第一行一个数字T(1<=T<=100),表示测试数据组数。
接下来T行,每行代表一组测试数据,包括三个整数a,b,m。(1<=a<=b<=2,000,000,000, 0<=m<=9)

Output

对于每组测试数据,输出一行表示“神奇的魔法数”的个数。

Sample Input

7
1 10 2
1 20 3
1 100 0
10 20 4
20 30 5
1 10 9
11 100 9

Sample Output

9
15
100
5
3
9
1
思路:dp[i][j]表示前i位最高位是j的神奇的魔法数的个数,那么分别统计小于a,b+1
的神奇的魔法数的个数就对了
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;

int dp[15][10];
int m;

void init(){
    memset(dp,0,sizeof(dp));
    for (int i = 0; i < 10; i++)
        dp[1][i] = 1;
    for (int i = 2; i < 12; i++)
        for (int j = 0; j < 10; j++)
            for (int k = 0; k < 10; k++)
                if (abs(j-k) >= m)
                    dp[i][j] += dp[i-1][k];
}

int solve(int n){
    int bit[15] = {0},len = 0;
    while (n){
        bit[++len] = n % 10;
        n /= 10;
    }
    int ans = 0;
    for (int i = 1; i < len; i++)
        for (int j = 1; j < 10; j++)
            ans += dp[i][j];
    for (int i = 1; i < bit[len]; i++)
        ans += dp[len][i];
    for (int i = len-1; i > 0; i--){
        for (int j = 0; j < bit[i]; j++)
            if (abs(j-bit[i+1]) >= m)
                ans += dp[i][j];
        if (abs(bit[i]-bit[i+1]) < m)
            break;
    }
    return ans;
}

int main(){
    int l,r;
    int t;
    scanf("%d",&t);
    while (t--){
        scanf("%d%d%d",&l,&r,&m);
        init();
        printf("%d\n",solve(r+1)-solve(l));
    }
    return 0;
}


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:823167次
    • 积分:18698
    • 等级:
    • 排名:第476名
    • 原创:1057篇
    • 转载:31篇
    • 译文:0篇
    • 评论:134条
    博客专栏
    最新评论