DLR、ASTER GDEM、SRTM3、GMTED2010等5种全球高程数据对比

转载 2016年05月30日 23:48:55

目前网上有多种全球高程数据,国内在这方面也进步喜人,资源三号目前已放出来的卫片给了不少惊喜,其高程数值得期待。但资源三号的高程数据放出来还需等待,过去两三年全球高程数据发展相当迅猛,DLR放出了相当高精度的数据,去年底aster gdem放出了修正后的第二版,数据质量改善很大,昨天又看到有网友介绍USGS放出的GMTED数据,所以决定先不等国产数据了,将目前的几种全球高程数据精度作简单对比。

 

    先简要介绍下这五种数据:

    1、DLR之SRTM X波段数据:DLR是德国宇航中心缩写,2000在奋进号航天飞机开展SRTM(航天飞机雷达地形测绘任务)时,德国人搭其便车也用自己的雷达测全球的地形数据,DLR用更高精度的雷达测试(X波段),带来了比美国人(C波段)更高精度,但只是呈网状覆盖全球(也就是说有些地方是没有DLR数据的)的高程数据。在2011年的时候,德国人放开了这个数据的下载,精度为1角秒(1 arc second),高程相对精度6米,绝对精度16米。在这可以下载:https://centaurus.caf.dlr.de:8443/eoweb-ng/index2.html。这个数据多说一点,德国人目前正在开展更高精度的地形测绘任务(TanDEM-X、TerraSAR-X双星观测)测全球更高精度的数据,这次是覆盖全球,这个数据对于民用来说相当可观了。

   2、aster gdem数据:美国货,该数据是根据 NASA的新一代对地观测卫星Terra的观测结果制作完成的。其数据覆盖范围为北纬83°到南纬83°之间的所有陆地区域。这是目前覆盖最广的高精度全球高程数据。2009年放出了第一版数据,目前国内中科院有镜像数据可以下载。

    3、gdem-v2数据:对之前的gdem数据的修正,于2011年10月份放出,我是在日本航天局的网站下载的。

    4、SRTM C波段数据,美国货,可能是最有名的高程数据了。美国航空航天局NASA在2000时利用奋进号航天飞机上的雷达测观测所得,是以前用得最多的高程数据,覆盖了全球南北纬60度以内的区域。有SRTM1和SRTM3两种,即分别是1角秒和3角秒精度的数据,对应精度为30米和90米。谷歌地球所使用高程数据即为SRTM3。公开出来的覆盖中国区域的只有90米精度。中科院镜像可以下载。

    5、GMTED2010数据,美国货,美国地质勘探局USGS和美国国家地理空间情报局NGA搞的,我也是刚知道这个数据。从其自述文件来看,它是对USGS的GTOPO30的进一步优化和发展,不过这个数据精度并不可观,只有30角秒、15角秒和7.5角秒,对应的最高精度也在250米了。再多说几句:USGS上有它做的只覆盖美国的高程数据,看其介绍,精度为1角秒的1/3角秒,部分区域还有1/9角秒,即精度达到了3米的水平,相当可观。



    我关注的都是中国数据,除DLR全球都开放高精度外,如前所述,往往美国境内都还有比中国精度更高的数据,普通网友拿不到其在中国区域的更高精度数据。

    

    我用北京香山地区的数据作对比,以点距5米截取该区域各种原始高程数据(该截取精度均大于原始数据精度,因此截取不会产生失真)。其中GMTED的数据有好几种,还未看具体区别,我用的是gmted-gmax075。



    对比一:比例尺没有严格控制,5种数据的比例尺基本都在1:57000左右,图片东西长约15公里,西至军庄镇,东至颐和园。

















    对比二:比例尺均在1:12000,对比下细节方面,生成10米等高距的等高线来辅助显示细节,图中右下角蓝色区域是香山水库,可以作为参照,该水库长约500米。可以看出DLR的细节十分丰富,可用性相当强。















 



    基本结论:DLR精度在10米左右(相对精度6m,绝对精度16m),gdem-v2在30米左右,gdem和srtm在90米左右,GMTED2010在200米以上。

    因此对于只想找尽可能高精度数据使用,又不愿花过多时间研究各数据区别的网友,我的建议就是下载全部的DLR数据和gdem-v2的数据,DLR覆盖到的区域用DLR数据,未覆盖到的区域用gdem-v2。

 

相关文章推荐

CMake 学习

一、背景知识 Cmake是kitware公司以及一些开源开发者在开发几个工具套件(VTK)的过程中衍生品,最终形成体系,成为一个独立的开放源代码项目。项目的诞生时间是2001年。其官 方网站是ww...

人脸识别之人脸对齐(五)--ESR算法

我们提出了一种非常有效、高准确率的人脸对齐方法,将其称为“显式形状回归”.和之前的一些基于回归的方法不同,通过训练数据最小化对齐错误函数,学习一个向量回归函数直接推断整个面部形状(一个特征点集合)。在...

VTK的安装配置-使用VS2010

1、CMake的安装 CMake安装时用来对VTK编译前的配置工作。此博客中使用的是CMake2.8。 2、VTK源码 VTK源码直接从VTK的官方网站上下载得到,此博客中下载的是vtk-5.10.1...

CMake使用二——CMake使用向导

CMake使用向导 康 林(译) 2012-04-28     原文地址:http://www.cmake.org/cmake/help/cmake_tutorial.html 这个向导的...
  • kl222
  • kl222
  • 2012-05-03 10:00
  • 7994

ZeroMQ+VS2010配置

ZeroMQ+VS2010配置
  • bqrmt
  • bqrmt
  • 2016-03-30 21:17
  • 623

[Python源码学习] 之 Python解释器

源码结构 下载Python的源码,解压,即可看到源码的目录结构。 奇怪:Python2.7.2根目录下的 README 文件中有 各个目录的说明,在 Python3.2.1根目录下的REA...

人脸识别之人脸对齐(三)--AAM算法

原文: http://blog.csdn.net/colourfulcloud/article/details/9774017 这是我在做人脸识别项目的时候主要用到的一个算法。在这里把我对AAM用于人...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)