【4】深度学习之百家争鸣:产业链

转载 2016年05月30日 11:18:35

原文戳这里

提及人工智能,不知你是否想到的还是AlphaGo大战李世石的那一场大戏,不知你是否在为科幻电影中的脑洞感到恐惧?

事实上,人工智能没有你想的那么强,也没有那么不接地气。当前人工智能的能力还处在非常早的时期,但它能帮助人们在海量数据分析层面可以带来的市场价值绝对超出你的想象。而且,就是现在,当前的技术已经有相当大的应用价值,我们并不是在畅想未来。

本周的智能内参推荐的报告来自Tractica,这是美国的一家市场调研智库,重点研究人机交互。报告主要解释了深度学习如何对机器视觉市场起到推动作用,也就是指人工智能识别图像的能力。报告同时对全球的深度学习产业链进行了梳理,还预测了深度学习对几大行业推动的市场预测。可以在智东西(公众号:zhidxcom)回复关键词“深度学习”下载报告全文。

0001

简单介绍一下人工智能发展史上里程碑式的时间节点:

1956年夏天,“人工智能”这个术语在达特茅斯会议上正式出现;

1958年,模拟人工神经网络的感知机第一次出现;

1961年,出现了微积分解算机;

1962年,出现了国际跳棋程序;

1964年,出现了自然语言代数解算机;

1967年,人工智能开始学习国际象棋的知识;

1968年4月3日,在当年横扫北美票房和奥斯卡,讲述人工智能的科幻电影《2001:太空漫游》上映;

1969年,由Marvin Minsky和Seymour Papert创作的人工神经网络著作《感知》出版;

1970年,人工智能第一次寒冬来临。

0002

2007年,阿尔伯塔大学的研究员们解决了跳棋问题;

2010年,谷歌组建了自动驾驶车;

2010年,Narrative Science公司创造了会自己写新闻的人工智能Quill;

2011年,IBM Watson参加综艺节目《危险边缘》并赢得了人机对战的胜利;

2012年6月,谷歌进行了无人监管人工智能测试;

2013年12月18日, 科幻电影《Her》上映;

2015年4月,人工智能企业应用出版;

当然还有近期的AlphaGo事件……

0003

而如今的深度学习产生的3个重大变化是:数据量的大幅增加,硬件的快速增长以及算法的进步。

到2024年,深度学习仅仅在软件方面的市场价值就会超过104亿美元,更何况硬件和服务方面的收入会是软件份额的数倍以上。

0004

作者Bruce Daley是Tractica的首席分析师,著有《Where Data Is Wealth: Profiting from data storage in a digital society》一书,他分享的这篇报告主要介绍了深度学习的差异,市场驱动力和障碍以及深度学习市场的应用和预测等方面。

0005

Tractica是美国的一家市场调研智库,重点研究人机交互。开篇简介过,这里就不再赘述了。

0006

深度学习会给机器视觉带来哪些变化?

下面画像里的大叔就是作者本人。 使用深度学习技术可以通过数字手段就行绘图。以某种风格的图形作为函数,输入一张图片作为内容,就能输出同一内容转换风格的画作。

0007

在这样的思路下,多种多样的风格都可以被具体为某一函数,对图像进行作用。

0008

0009

偶尔还会出现美学价值很高的作品。(彩蛋:你有看到熟悉的baby女神吗?~)

而这些使用Photoshop,C++,PaintBrush就可以实现了。

0010

这样一来,通过模型模仿并简化大脑神经网络,通过数据将思想具象化,再通过技术手段再造艺术,深度学习就这样影响了机器视觉。

0011

在这个信息爆炸的时代,数据量已经远远超过了人工分析能够处理的量级。数据的增长也会伴随着科技产品的整个生命周期。

0012

市场驱动力和障碍

市场的驱动力包括了:

数据的增长,硬件性能的改进(包括GPU,FPGA,ASSP),软件算法的进步,宏观市场和经济趋势。

市场障碍包括:

技术限制,人们的预期与现实之间的差异,社会关切,政策和监管因素,人才的缺乏以及市场的不成熟。

0013

这里作者为我们梳理了深度学习的市场图谱:

目前的开源工具有:

H20.AI ,TensorFlow ,Theano,CNTK,Torch,Caffe ,KALDI。

在深度学习方面投入研发的大学有:

麻省理工学院,牛津大学,普渡大学,加州伯克利,纽约大学,瑞士Dalle Molle人工智能研究所,多伦多大学,清华大学,蒙特利尔大学,香港大学,斯坦福大学,卡内基梅隆大学。

大型科技公司有:

微软,IBM,谷歌,Facebook,Uber,亚马逊,苹果,百度。

半导体公司有:

英伟达,高通,英特尔,赛灵思。

0014

深度学习市场的应用和预测

应用举例:图形标记和所属者识别。

先来看一下市场需求。Facebook上的用户每天将3亿5千万张新照片传上网,谷歌被预测其拥有的可被索引的图片数量超过一万亿张。这些图像在网上都有其价值,但这样的工程量不是人工可以解决的。

所以我们只能依靠结合机器视觉的人工智能解决上述问题。

0015

市场预测:广告服务业。

上述问题涉及到的公司是Facebook,谷歌和百度,到2024年,深度学习在全球广告服务业的软件收入将逼近30亿美元。(图中底部蓝色柱形表示北美市场,上部紫色柱形代表亚太市场。下同)

谷歌主任研究员Pete Warden表示:“差不多谷歌所有的产品都能用上深度学习技术”。

0016

应用举例:数字放射图像(X光)。

咱们看病,拍个片子找医生诊断,无比麻烦,又贵!掌握机器视觉技能的人工智能也能干这活!省钱,省时间,还能做到比人出错少!

0017

市场预测:医疗诊断行业。

涉及到的大公司是IBM,谷歌和Enlitic,到2024年,深度学习在全球医疗诊断业的软件收入将逼近3亿美元。这样基于检测证据的医疗技术可以推动机器处方以及新的商业模式,尤其是在发展中国家。(是不是一瞬间想起了频繁攻占医院的马云爸爸?!)

0018

应用举例:农作物健康分析。

这项技术的一个基本出发点就是,把天上都卫星当超级稻草人!卫星拍回来的实时图像通过会CV(computer vision机器视觉)的AI(artificial intelligence人工智能)加以判断,可以解决的问题有:地球这个大农场,各地的粮食长的怎么样啊?土壤是否健康啊?有没有气象天灾有可能带来减产啊,河流和灌溉怎么支配啊,树冠涨的好不好啊?等等等等。

0019

市场预测:农业。

涉及到的大公司是Monsanto,Nervana,GeoVisual,到2024年,深度学习在全球农业的软件收入将超过2亿美元。(不知习大大去东北视察黑土地时会不会想到这个问题~)

0020

应用举例:药物依赖性的临场试验。

需求就是,一直以来,患者没有不遵医嘱按时服药等问题会在临床实验上引起极严重的后果。

0021

市场预测:医疗保健业。

涉及到的大公司是IBM,AiCure,MGH,到2024年,深度学习在全球广告服务业的软件收入将超过7500万美元。 人们使用这样的技术应用于医疗保健并管理自己的生活,意义在于通过长期的习惯建立来获得长久的健康。

0022

应用举例:服装尺码和试装。

这里就需要从数据挖掘市场潜力啦。很多其他门类的商品线上销量差不多都达到了总体销量的50%,而服装类一直徘徊在20%左右。还是因为人们需要去实体店解决尺码和试装的问题。

0023

市场预测:零售业。

涉及到的大公司是苹果,亚马逊和Thirdlove,到2024年,深度学习在全球零售业的软件收入将逼近8亿美元。 (马云爸爸二次出镜,你听到深度学习向你呼唤了吗?)

0024

应用举例:制造业的例子,品控。

2012年,全球被召回汽车的数目几乎等于汽车的销量,大量的担保费用影响了汽车制造商们的利润。

0025

市场预测:制造业。

涉及到的大公司是通用,日本的METI,波音和Airbus,到2024年,深度学习在全球制造业的软件收入将超过10亿美元。 会CV的AI在这一方向上的研究和应用还很少,但是中美以及强劲复苏的日本都会在这方面发力。

0026

总结看来,深度学习对数据强烈依赖,而分析图像数据,更是要求人工智能拥有机器视觉的能力。而数据的来源本身以及各种应用场景都会带来全新的商业模式,加上更快的硬件,更好的软件,找对商业模式的公司就会在这波爆发中胜出。

0027

在创造新的商业模式的同时,深度学习也会破坏甚至终结一些旧的商业模式。比如Uber之于出租公司,阿里之于线下零售商,airbnb之于酒店业,Facebook之于社交媒体。管理服务公司Salesforce的CEO Marc Benioff 认为:“在各行各业,特别是科技行业,人们总是高估其一年内的生产力,却低估坚持十年所能产生的伟大变化”。

0028

扩展阅读,大家可以自取所需。

0029

0030

0031

智能内参的观察是:这里所有市场预测的一大共性是:当前,机器学习的市场几乎还处于萌芽状态,从未来八年的增长态势观察,我们看到了一个巨大的爆发。

而且上述预测还只是软件行业的市场规模,在各类终端百花齐放的当前时期,尽管越是成熟的终端发展的路线越是保守,但是恐怕新型智能终端越是能挖掘大量的数据,所产生的价值和衍生服务带来的价值就会更大。在这些数据面前,AI就是挖金的矿工。

本文为智东西整理呈现,文中所有数据结论版权归原作者所有。

重要的事情再说一遍,可以在智东西(公众号:zhidxcom)回复关键词“深度学习”下载报告全文。

相关文章推荐

深度学习在金融领域的应用构想

(本文转自“格物课堂”:http://www.gewuketang.com/archives/494) 从技术角度来看,目前人工智能领域所使用的主要技术就是深度网络,同时辅以某些传统机器学习方法以及...
  • tofacto
  • tofacto
  • 2017年04月21日 17:03
  • 779

OpenCV的HoG特征点详解

HOG即histogram of oriented gradient, 是用于目标检测的特征描述子,该技术将图像局部出现的方向梯度次数进行计数,该方法和边缘方向直方图、scale-invariant ...

深度学习实践经验:用Faster R-CNN训练Caltech数据集——训练检测

前言前面已经介绍了如何准备数据集,以及如何修改数据集读写接口来操作数据集,接下来我来说明一下怎么来训练网络和之后的检测过程。修改模型文件faster rcnn有两种各种训练方式: Alternativ...

Deep Learning-part4(深度学习)

  • 2016年04月18日 17:26
  • 59.52MB
  • 下载

深度学习与自然语言处理(4)_斯坦福cs224d 大作业测验1与解答

前面一个接一个的Lecture,看得老衲自己也是一脸懵逼,不过你以为你做一个安安静静的美男子(总感觉有勇气做deep learning的女生也是一条汉纸)就能在Stanford这样的学校顺利毕业啦?图...

吴恩达Coursera深度学习课程 DeepLearning.ai 提炼笔记(1-4)-- 深层神经网络

神经网络和深度学习 ------- 深层神经网络

<深度学习优化策略-4> 基于Gate Mechanism的激活单元GTU、GLU

1 Sigmoid和Tanh激活函数及存在问题     深度学习(神经网络)中最先被广泛使用的激活函数是Sigmoid函数和双曲正切激活函数,都是非线性的激活函数,两个激活函数的表达式如下: s...

深度学习_caffe (4) 基于mnist实例搭建新的神经网络&在caffe中添加层

机器学习入门级的例子,mnist手写体数字识别的训练数据库。可以通过caffe提供的这个例子来学习神经网络的模型在caffe中是如何组织 如何运行的,然后我们就可以试着去搭建自己的神经网络模型 实现相...

神经网络与深度学习 笔记4 交叉熵代价函数 softmax函数

1. 学习缓慢问题 二次代价函数,定义如下 其中 a 是神经元的输出,训练输入为 x = 1,y = 0 则是目标输出。显式地使用权重和偏置来表达这个,我们有 a = σ(z),其中 ...

Windows深度学习环境搭建:CUDA+cuDNN+Anaconda+TensorFlow+Keras (4)

Python及深度学习库的安装,涉及:Anaconda、TensorFlow以及Keras的主要安装过程。附带一些测试方法。...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:【4】深度学习之百家争鸣:产业链
举报原因:
原因补充:

(最多只允许输入30个字)